Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks...The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks that scientific society has been focused on to improve and optimize the overall technology.Thus,the cost is the main inhibitor for this technology due to the significantly high cost of the materials used in catalyst layers.The current discussion mainly focuses on the fundamental electrochemical half-cell reaction of hydrogen oxidation reaction(HOR)and oxygen reduction reaction(ORR)that are taking place in the catalyst layers consisting of Platinum-based and Platinum-non noble metals.For this purpose,studies from the literature are presented and analyzed by highlighting and comparing the variations on the catalytic activity within the experimental catalyst layers and the conventional ones.Furthermore,an economic analysis of the main platinum group metals(PGMs)such as Platinum,Palladium and Ruthenium is introduced by presenting the economic trends for the last decade.展开更多
A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following...A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following covalent immobilization of glucose oxidase on the pore walls of the 3DOM materials. The materials were characterized by SEM, FTIR, DSC and BET techniques. SEM observation shows that the macropores are highly ordered and are interconnected by small windows. FTIR measurement shows that there are amino and organic groups in the pore walls. The surface area of the 3DOM SiO2-NH2 material is about 10.2 m2/g. The loaded amount of enzyme is increased with amino content in the materials. The immobilized enzyme has high activity, thermal stability and can be reused.展开更多
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
文摘The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks that scientific society has been focused on to improve and optimize the overall technology.Thus,the cost is the main inhibitor for this technology due to the significantly high cost of the materials used in catalyst layers.The current discussion mainly focuses on the fundamental electrochemical half-cell reaction of hydrogen oxidation reaction(HOR)and oxygen reduction reaction(ORR)that are taking place in the catalyst layers consisting of Platinum-based and Platinum-non noble metals.For this purpose,studies from the literature are presented and analyzed by highlighting and comparing the variations on the catalytic activity within the experimental catalyst layers and the conventional ones.Furthermore,an economic analysis of the main platinum group metals(PGMs)such as Platinum,Palladium and Ruthenium is introduced by presenting the economic trends for the last decade.
文摘A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following covalent immobilization of glucose oxidase on the pore walls of the 3DOM materials. The materials were characterized by SEM, FTIR, DSC and BET techniques. SEM observation shows that the macropores are highly ordered and are interconnected by small windows. FTIR measurement shows that there are amino and organic groups in the pore walls. The surface area of the 3DOM SiO2-NH2 material is about 10.2 m2/g. The loaded amount of enzyme is increased with amino content in the materials. The immobilized enzyme has high activity, thermal stability and can be reused.