Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
A novel molecular probe for identifying properties of supported transition metals and metal oxides catalysts was established.The catalytic mechanism of transition metals was proposed.
PASCA, ESR and Microreactor, have been used to study the states and properties of coking deposits on catalyst. The results indicate that the C exists as three types of states on catalyst surface. The first and second ...PASCA, ESR and Microreactor, have been used to study the states and properties of coking deposits on catalyst. The results indicate that the C exists as three types of states on catalyst surface. The first and second types of carbon are the main reason of the catalyst deactivation, but the third type has a promoting role in n-C_7 hydrocracking reaction. The S_s-C interacts strongly with catalyst, forming metal-carbon-support interaction (MCSI).展开更多
The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_...The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.展开更多
Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these...Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these pretreated catalysts were aged at 1000 °C for 3 h to study their anti-aging properties. The catalytic activities of the catalysts were investigated detailedly, and the results showed that the catalyst pretreated at 800 °C before aging treatment possessed the best anti-aging performance for CHoxidation. XRD and XPS results indicated that well-crystallized CeOparticles were formed during calcinations at 800 °C, which made CeOan effective promoter. HRTEM revealed that Pd particles found on the edge of CeOover the aged catalyst pretreated at 800 °C were relatively smaller than those over the catalysts without pretreatment. H-TPR and XPS results also implied that the interaction between well-crystallized CeOand Pd suppressed the deactivation of PdO sites and further enhanced the catalytic performance.展开更多
Porous Porous Co_(x)Ni_(1-x)TiO_(3) nanorods were successfully synthesized through a solution-based method following an ethylene glycol route at room temperature.The effect of calcination temperature from 300℃to 900...Porous Porous Co_(x)Ni_(1-x)TiO_(3) nanorods were successfully synthesized through a solution-based method following an ethylene glycol route at room temperature.The effect of calcination temperature from 300℃to 900℃ for NiTiO_(3) and CoTiO_(3) nanorods was studied using X-ray diffractometry and scanning electron microscopy in order to investigate their structural and morphological properties.The optimum calcination temperature to prepare pure ilmenite type structure rods with high crystallinity and hexagonal shape was 600Co_(x)Ni_(1-x)TiO_(3) exhibited the highest photocatalytic activity for the degradation of ethyl paraben,an endocrine disrupting compound,under simulated solar or visible light irradiation.Nearly complete(i.e.92%)paraben degradation occurred after 5 h of solar irradiation and this decreased to 48%when only the visible part of the radiation was employed.The solar photocatalytic activity of CoTiO_(3) and NiTiO_(3) was found to be 42%and 67%,respectively.展开更多
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
文摘A novel molecular probe for identifying properties of supported transition metals and metal oxides catalysts was established.The catalytic mechanism of transition metals was proposed.
文摘PASCA, ESR and Microreactor, have been used to study the states and properties of coking deposits on catalyst. The results indicate that the C exists as three types of states on catalyst surface. The first and second types of carbon are the main reason of the catalyst deactivation, but the third type has a promoting role in n-C_7 hydrocracking reaction. The S_s-C interacts strongly with catalyst, forming metal-carbon-support interaction (MCSI).
基金Supported by the National Natural Science Foundation of China(21006065)the Zhejiang Provincial Natural Science Foundation of China(Y5100009)
文摘The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.
基金Project supported by the National Natural Science Foundation of China(21173153)the National Hi-tech Research Development Program of China(863 Program,2013AA065304)the Sichuan Science and Technology Agency Supported Project(2012FZ0008)
文摘Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these pretreated catalysts were aged at 1000 °C for 3 h to study their anti-aging properties. The catalytic activities of the catalysts were investigated detailedly, and the results showed that the catalyst pretreated at 800 °C before aging treatment possessed the best anti-aging performance for CHoxidation. XRD and XPS results indicated that well-crystallized CeOparticles were formed during calcinations at 800 °C, which made CeOan effective promoter. HRTEM revealed that Pd particles found on the edge of CeOover the aged catalyst pretreated at 800 °C were relatively smaller than those over the catalysts without pretreatment. H-TPR and XPS results also implied that the interaction between well-crystallized CeOand Pd suppressed the deactivation of PdO sites and further enhanced the catalytic performance.
基金the Stavros Niarchos Foundation within the framework of the project ARCHERS(“Advancing Young Researchers'Human Capital in Cutting Edge Technologies in the Preservation of Cultural Heritage and the Tackling of Societal Challenges”).Ms.M.Moschogiannaki acknowledges Onassis Foundation for providing a scholarship for graduate studies.
文摘Porous Porous Co_(x)Ni_(1-x)TiO_(3) nanorods were successfully synthesized through a solution-based method following an ethylene glycol route at room temperature.The effect of calcination temperature from 300℃to 900℃ for NiTiO_(3) and CoTiO_(3) nanorods was studied using X-ray diffractometry and scanning electron microscopy in order to investigate their structural and morphological properties.The optimum calcination temperature to prepare pure ilmenite type structure rods with high crystallinity and hexagonal shape was 600Co_(x)Ni_(1-x)TiO_(3) exhibited the highest photocatalytic activity for the degradation of ethyl paraben,an endocrine disrupting compound,under simulated solar or visible light irradiation.Nearly complete(i.e.92%)paraben degradation occurred after 5 h of solar irradiation and this decreased to 48%when only the visible part of the radiation was employed.The solar photocatalytic activity of CoTiO_(3) and NiTiO_(3) was found to be 42%and 67%,respectively.