期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Hierarchically porous Co@N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport:An advanced 1D oxygen reduction catalyst for Zn-air battery 被引量:1
1
作者 Yifei Zhang Quanfeng He +4 位作者 Zihao Chen Yuqing Chi Junwei Sun Ding Yuan Lixue Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期117-126,I0004,共11页
Developing advanced oxygen reduction reaction(ORR)electrocatalysts with rapid mass/electron transport as well as conducting relevant kinetics investigations is essential for energy technologies,but both still face ong... Developing advanced oxygen reduction reaction(ORR)electrocatalysts with rapid mass/electron transport as well as conducting relevant kinetics investigations is essential for energy technologies,but both still face ongoing challenges.Herein,a facile approach was reported for achieving the highly dispersed Co nanoparticles anchored hierarchically porous N-doped carbon fibers(Co@N-HPCFs),which were assembled by core-shell MOFs-derived hollow polyhedrons.Notably,the unique one-dimensional(1D)carbon fibers with hierarchical porosity can effectively improve the exposure of active sites and facilitate the electron transfer and mass transfer,resulting in the enhanced reaction kinetics.As a result,the ORR performance of the optimal Co@N-HPCF catalysts remarkably outperforms that of commercial Pt/C in alkaline solution,reaching a limited diffusion current density(J)of 5.85 m A cm^(-2)and a half-wave potential(E_(1/2))of 0.831 V.Particularly,the prepared Co@N-HPCF catalysts can be used as an excellent air-cathode for liquid/solid-state Zn-air batteries,exhibiting great potentiality in portable/wearable energy devices.Furthermore,the reaction kinetic during ORR process is deeply explored by finite element simulation,so as to intuitively grasp the kinetic control region,diffusion control region,and mixing control region of the ORR process,and accurately obtain the relevant kinetic parameters.This work offers an effective strategy and a reliable theoretical basis for the engineering of first-class ORR electrocatalysts with fast electronic/mass transport. 展开更多
关键词 Oxygen reduction catalyst Metal-organic frameworks Carbon nanofiber Hierarchically porous structure Diffusion kinetics Zn-air battery
下载PDF
Simultaneous recovery of carbon and sulfur resources from reduction of CO_2 with H_2S using catalysts 被引量:5
2
作者 Hui Su Yuyang Li +3 位作者 Ping Li Yongxiu Chen Zhizhi Zhang Xiangchen Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期110-116,共7页
An approach to the simultaneous reclamation of carbon and sulfur resources from CO2 and H2S has been proposed and effectively implemented with the aid of catalysts. A brief thermodynamic study reveals the potential of... An approach to the simultaneous reclamation of carbon and sulfur resources from CO2 and H2S has been proposed and effectively implemented with the aid of catalysts. A brief thermodynamic study reveals the potential of direct reduction of CO2 with H2S(15:15 mol% balanced with N2) for selective production of CO and elemental sulfur. The experiments carried out in a fixed-bed flow reactor over the temperature range of 400–800 °C give evidence of the importance of the employment of catalysts. Both the conversions of the reactants and the selectivities of the target products can be substantially promoted over most catalysts studied. Nevertheless, little difference appears among their catalytic performance. The results also prove that the presence of CO2 can remarkably enhance H2S conversion and the sulfur yield in comparison with H2S direct decomposition. A longtime reaction test on Mg O catalyst manifests its superior durability at high temperature(700 °C) and huge gas hourly space velocity(100,000 h-1). Free radicals initiated by catalysts are supposed to dominate the reactions between CO2 and H2S. 展开更多
关键词 Carbon dioxide Hydrogen sulfide Simultaneous recovery reduction catalyst
下载PDF
Asymmetric Reduction of Aromatic Ketone withSufonylamide Catalysts
3
作者 Gao-shen Yang Jian-Bing Hu +1 位作者 Gang Zhao Yu Ding (Shanghai institute of organic chemistry,Academia Sinica, 354 Fenglin Shanghai) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第S1期129-129,共1页
The asymmetric borane reduction of carbonyl compounds using chiral catalysts is one of the most active research. Among them,Oxazaborolidines developed by Corey are most significant- Herein. we report the use of sufony... The asymmetric borane reduction of carbonyl compounds using chiral catalysts is one of the most active research. Among them,Oxazaborolidines developed by Corey are most significant- Herein. we report the use of sufonylamides as chiral catalysts to reduce aromatic ketone in high yield and with e.e. of up to 91 %. Scheme: 展开更多
关键词 Asymmetric reduction of Aromatic Ketone withSufonylamide catalysts
下载PDF
Reduction and carburization of iron oxides for Fischer–Tropsch synthesis 被引量:2
4
作者 Monia Runge Nielsen Asger Barkholt Moss +11 位作者 Anton Simon Bjrnlund Xi Liu Axel Knop-Gericke Alexander YuKlyushin Jan-Dierk Grunwaldt Thomas LSheppard Dmitry EDoronkin Anna Zimina Thomas Eric Lyck Smitshuysen Christian Danvad Damsgaard Jakob Birkedal Wagner Thomas Willum Hansen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期48-61,共14页
The activation of iron oxide Fischer–Tropsch Synthesis(FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction ... The activation of iron oxide Fischer–Tropsch Synthesis(FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction and carburization in syngas. A combination of different complementary in situ techniques was used to gain insight into the behavior of Fe-based FTS catalysts during activation. In situ XRD was used to identify the crystalline structures present during both reduction in hydrogen and carburization. An increase in reduction rate was established when increasing the temperature. A complete reduction was demonstrated in the ETEM and a grain size dependency was proven, i.e. bigger grains need higher temperature in order to reduce. XPS and XAS both indicate the formation of a small amount of carbonaceous species at the surface of the bulk metallic iron during carburization. 展开更多
关键词 In situ characterization Fischer–Tropsch catalyst reduction and carburization Iron oxides
下载PDF
3D Simulation Research on Urea-SCR DeNO_x Catalyst for Diesel Engine
5
作者 姜磊 葛蕴珊 +1 位作者 Asad Naeem Shah 谭建伟 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期428-432,共5页
In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complemen... In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity. 展开更多
关键词 diesel engine selective catalyst reduction (SCR) oxides of nitrogen (NO~) computational fluid dynamics
下载PDF
Pt‑Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction:Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability
6
作者 Jue Wang Fengwen Pan +5 位作者 Wenmiao Chen Bing Li Daijun Yang Pingwen Ming Xuezhe Wei Cunman Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期726-755,共30页
The development of ordered Pt-based intermetallic compounds is an effective way to optimize the electronic characteristics of Pt and its disordered alloys,inhibit the loss of transition metal elements,and prepare fuel... The development of ordered Pt-based intermetallic compounds is an effective way to optimize the electronic characteristics of Pt and its disordered alloys,inhibit the loss of transition metal elements,and prepare fuel cell catalysts with high activity and long-term durability for the oxygen reduction reaction(ORR).This paper reviews the structure–activity characteristics,research advances,problems,and improvements in Pt-based intermetallic compound fuel cell catalysts for the ORR.First,the structural characteristics and performance advantages of Pt-based intermetallic compounds are analyzed and explained.Second,starting with 3d transition metals such as Fe,Co,and Ni,whose research achievements are common,the preparation process and properties of Pt-based intermetallic compound catalysts for the ORR are introduced in detail according to element types.Third,in view of preparation problems,improvements in the preparation processes of Pt-based intermetallic compounds are also summarized in regard to four aspects:coating to control the crystal size,doping to promote ordering transformation,constructing a“Pt skin”to improve performance,and anchoring and confinement to enhance the interaction between the crystal and support.Finally,by analyzing the research status of Pt-based intermetallic compound catalysts for the ORR,prospective research directions are suggested. 展开更多
关键词 Fuel cell Pt-based intermetallic compounds Oxygen reduction reaction catalyst Preparation process optimization Performance improvement
原文传递
Comprehensive recovery of W,V,and Ti from spent selective reduction catalysts
7
作者 Li-Wen Ma Xiao-Li Xi +3 位作者 Jia-Peng Chen Fan Guo Zi-Jie Yang Zuo-Ren Nie 《Rare Metals》 SCIE EI CAS CSCD 2023年第10期3518-3531,共14页
In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al a... In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al and Si impurities were preferentially removed by selective micro wave-assisted alkali leaching.W and V were leached by enhanced high-pressure leaching with efficiencies estimated at 95% and 81%.The leaching of W and V followed the nuclear shrinkage model controlled by the combination of product layer diffusion and interfacial chemical reaction.A synergistic extraction was applied to separate W and V using an extractant mixture of di-(2-ethylhexyl)phosphoric acid P204 and the primary amine N1923.The extraction efficiencies of V and W reached 86.5% and 6.3%,respectively,with a separation coefficient(V/W) of 95.30.The product was precipitated after extraction to yield ammonium paratung state(APT) and NH_(4)VO_(3).The TiO_(2)catalyst carrier residue meets commercial specifications for reuse.This comprehensive recovery process with the characteristics of high-pressure leaching and synergistic extraction realizes the resourceful utilization of the spent catalysts. 展开更多
关键词 Spent selective catalytic reduction(SCR)catalysts Microwaveleaching Pressure leaching Synergistic extraction Comprehensive recovery
原文传递
Promoting effect and mechanism of neodymium on low-temperature selective catalytic reduction with NH3 over Mn/TiO2 catalysts 被引量:5
8
作者 Peng Wu Yaping Zhang +3 位作者 Ke Zhuang Kai Shen Sheng Wang Tianjiao Huang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第11期1215-1223,I0003,共10页
Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catal... Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80℃and NOx conversion is stabilized over 90%in the wide temperature range of 100-2600 C.0.1 Nd-Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst.The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3.XPS results indicate that the optimal 0.1 Nd-Mn/Ti sample possesses higher concentration of Mn4+and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart.In situ DRIFTS show that the surface acidity is evidently increased after adding Nd,especially,the Lewis acid sites,and the intermediate(-NH2)is more stable.The reaction mechanism over Mn/Ti and 0.1 Nd-Mn/Ti catalysts obey the Eley-Rideal(E-R)mechanisms under low temperature reaction conditions.H2-TPR results show that Nd-Mn/TiO2 catalyst exhibits better lowtemperature redox properties. 展开更多
关键词 Nd modification Mn/TiO2 catalyst LOW-TEMPERATURE Selective catalyst reduction MECHANISM Rare earths
原文传递
Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System 被引量:1
9
作者 LIN Wei ZHANG Youtong ASIF Malik 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期276-284,共9页
Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes o... Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly. 展开更多
关键词 select catalyst reduction(SCR) urea dosing system(UDS) dynamic flow control strategies
下载PDF
Role of NO in Hg^0 oxidation over a commercial selective catalytic reduction catalyst V_2O_5–WO_3/TiO_2 被引量:4
10
作者 Ruihui Liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第12期126-132,共7页
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficienc... Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficiency was increased by simultaneously adding NO and O2.With NO and O2 pretreatment at 350°C,the catalyst exhibited higher catalytic activity for Hg^0 oxidation,whereas NO pretreatment did not exert a noticeable effect.Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2.Although NO promoted Hg^0 oxidation at the very beginning,excessive NO counteracted this effect.The results show that NO plays different roles in Hg^0oxidation; NO in the gaseous phase may directly react with the adsorbed Hg^0,but excessive NO hinders Hg^0 adsorption.The adsorbed NO was converted into active nitrogen species(e.g.,NO2) with oxygen,which facilitated the adsorption and oxidation of Hg^0.Hg^0 was oxidized by NO mainly by the Eley-Rideal mechanism.The Hg^0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2. 展开更多
关键词 MERCURY NO Mechanism Selective catalytic reduction catalyst Oxidation Vanadium
原文传递
Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction 被引量:7
11
作者 Zhaoyan Guo Zhen Xiao +4 位作者 Guangyuan Ren Guozheng Xiao Ying Zhu Liming Dai Lei Jiang 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1244-1255,共12页
To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N... To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N, P, Fe) ternary-doped, porous carbons (HDPC). These materials are prepared by one-step pyrolysis of natural tea leaves treated with an iron salt, without any chemical and physical activation. The natural structure of the tea leaves provide a 3D hierarchical porous structure after carbonization. Moreover, heteroatom containing organic compounds in tea leaves act as precursors to functionalize the resultant carbon frameworks. In addition, we found that the polyphenols present in tea leaves act as ligands, reacting with Fe ions to form coordination compounds; these complexes acted as the precursors for Fe and N active sites. After pyrolysis, the as-prepared HDPC electrocatalysts, especially HDPC-800 (pyrolyzed at 800℃), had more positive onsets, half-wave potentials, and higher catalytic activities for the ORR, which proceeds via a direct four-electron reaction pathway in alkaline media, similar to commercial Pt/C catalysts. Furthermore, HDPC-X also showed enhanced durability and better tolerance to methanol crossover and CO poisoning effects in comparison to commercial Pt/C, making them promising alternatives for state-of-the-art ORR electrocatalysts for electrochemical energy conversion. The method used here provides valuable guidelines for the design of high-performance ORR electrocatalysts from natural sources at the industrial scale. 展开更多
关键词 green tea leaves oxygen reduction catalysts heteroatoms doped hierarchically porous carbon synergistic effect
原文传递
Transition metal-nitrogen-carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization 被引量:9
12
作者 Mengxia Shen Changting Wei +1 位作者 Kelong Ai Lehui Lu 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1449-1470,共22页
Accelerating the rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue for the commercialization of fuel cells. Transition metal-nitrogen-carbon (M-N/C, M = Fe, Co, etc.) nanostru... Accelerating the rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue for the commercialization of fuel cells. Transition metal-nitrogen-carbon (M-N/C, M = Fe, Co, etc.) nanostructures are the most promising class of non-precious metal catalysts (NPMCs) with satisfactory activities and stabilities in practical fuel cell applications. However, the long-debated nature of the active sites and the elusive structure-performance correlation impede further developments of M-N/C materials. In this review, we present recent endeavors to elucidate the actual structures of active sites by adopting a variety of physicochemical techniques that may provide a profound mechanistic understanding of M-N/C catalysts. Then, we focus on the spectacular progress in structural optimization strategies for M-N/C materials with tailored precursor architectures and modified synthetic routes for controlling the structural uniformity and maximizing the number of active sites in catalytic materials. The recognition of the right active centers and site-specific engineering of the nanostructures provides future directions for designing advantageous M-N/C catalysts. 展开更多
关键词 oxygen reduction reaction catalyst metal-nitrogen-carbon(M-N/C M = Fe Co etc.) fuel cell
原文传递
Reduction of NO by CO using Pd–CeTb and Pd–CeZr catalysts supported on SiO_2 and La_2O_3–Al_2O_3 被引量:7
13
作者 Victor Ferrer Dora Finol +2 位作者 Roger Solano Alexander Moronta Miguel Ramos 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期87-96,共10页
The catalytic activity of Pd catalysts supported on Ce0.73Tb0.27Ox/SiO2, Ce0.6Zr0.4Ox/Si O2,Ce0.73Tb0.27Ox/La2O3–Al2O3and Ce0.6Zr0.4Ox/La2O3–Al2O3was studied using the reduction of NO by CO. The catalysts were chara... The catalytic activity of Pd catalysts supported on Ce0.73Tb0.27Ox/SiO2, Ce0.6Zr0.4Ox/Si O2,Ce0.73Tb0.27Ox/La2O3–Al2O3and Ce0.6Zr0.4Ox/La2O3–Al2O3was studied using the reduction of NO by CO. The catalysts were characterized by X-ray fluorescence, surface area, X-ray diffraction, temperature-programmed reduction, CO chemisorption and oxygen storage capacity. Temperature-programmed reduction results indicated that Tb or Zr incorporation improves the reducibility and oxygen storage capacity. CO chemisorption data suggested the presence of large Pd O particles due to the low CO/Pd ratio. No significant differences were obtained in light off temperatures(T Light off) for all Pd catalysts and the most active was1.5%Pd/Ce0.6Zr0.4Ox/SiO2. 展开更多
关键词 Mixed oxides OSC reduction of NO by CO Three way catalysts
原文传递
Small-sized tungsten nitride anchoring into a 3D CNT- rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions 被引量:9
14
作者 Haijing Yan Meichen Meng +4 位作者 Lei Wang Aiping Wu Chungui Tian Lu Zhao Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2016年第2期329-343,共15页
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanop... The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization. 展开更多
关键词 small-sized tungste nnitride 3D CNT-rGO bifunctional catalyst methanol oxidation reaction oxygen reduction reaction
原文传递
A non-precious metal catalyst for oxygen reduction prepared by heat-treating a mechanical mixture of carbon black,melamine and cobalt chloride 被引量:1
15
作者 Yu-Jun Si Zhong-Ping Xiong +2 位作者 Chang-Guo Chen Ping Liu Hui-Juan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第12期1109-1111,共3页
A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The cata... A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The catalytic activity of CoMe/C is characterized by the electrochemical linear sweep voltammetry technique. The onset reduction potential of the catalyst is 0.55 V (vs. SCE) at a scanning rate of 5 mV/s in 0.5 mol/L H2SO4 solution. The formation of the ORR activity sites of CoMe/C is facilitated by metallic β- cobalt. 展开更多
关键词 Oxygen reduction Non-precious metal catalyst Preparation Mechanical method
原文传递
In-situ investigation of melting characteristics of waste selective catalytic reduction catalysts during harmless melting treatment
16
作者 Hao ZHOU Yu-jian XING +1 位作者 Jia-nuo XU Ming-xi ZHOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第3期207-221,共15页
Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste... Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts. 展开更多
关键词 Waste selective catalytic reduction(SCR)catalyst Thermal melting treatment Melting characteristics ADDITIVES Heating stage microscope Leaching toxicity
原文传递
Hydrogenation of cinnamaldehyde over bimetallic Au-Cu/CeO_2 catalyst under a mild condition 被引量:2
17
作者 Xue-Mei Liao Veronique Pitchon +2 位作者 Pham-Huu Cuong Wei Chu Valerie Caps 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期293-296,共4页
Bimetallic Au_xCu_y/CeO_2(x/y = 3/1,1/1,and 1 /3) catalysts were prepared by direct anion exchange(DAE),following impregnation(IMP) methods,and used for selective hydrogenation of cinnamaldehyde.The effects of p... Bimetallic Au_xCu_y/CeO_2(x/y = 3/1,1/1,and 1 /3) catalysts were prepared by direct anion exchange(DAE),following impregnation(IMP) methods,and used for selective hydrogenation of cinnamaldehyde.The effects of pretreatments,such as calcination or reduction on the catalytic activities of these catalysts were investigated.XRD and HRTEM showed that for the reduced catalysts,there is the formation of an Au-Cu alloy.HAADF-STEM displayed that reduction pretreatment leads to a very homogenous distribution of Au and Cu on the external catalyst surface.Reaction parameters,such as CAL concentration,the stirring speed,nature of the solvent influence the catalytic activities.Pretreatments lead to a major effect on CAL conversion and HCAL selectivity.Catalysts Au_xCu_y/CeO_2 pretreated under reduction display higher CAL conversion and HCAL selectivity than that of under calcination mainly due to the synergistic effect resulting in a formation of Au-Cu alloy. 展开更多
关键词 Hydrogenation of cinnamaldehyde Bimetallic Au-Cu catalysts reduction or calcination Distribution Alloy
原文传递
Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide 被引量:12
18
作者 Yun-Xiang Pan Zheng-Qing Sun +4 位作者 Huai-Ping Cong Yu-Long Men Sen Xin Jie Song Shu-Hong Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第6期1689-1700,共12页
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affec... Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga203), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0umol.h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 gmol-h-1) and Pt/TiO2(P25) (6.7 gmol.h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga203, thus enhancing the photocatalytic activity of Pt/Ga203. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction. 展开更多
关键词 photocatalytic CO2reduction oxygen vacancy metal-oxide-based catalyst C02 adsorption
原文传递
Template-directed synthesis of nitrogen- and sulfur- codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction 被引量:1
19
作者 Shaofang Fu Chengzhou Zhu +6 位作者 Junhua Song Mark H. Engelhard Xiaolin Li Peina Zhang Haibing Xia Dan Du Yuehe Lin 《Nano Research》 SCIE EI CAS CSCD 2017年第6期1888-1895,共8页
Heteroatom doping, precise composition control and rational morphology design are efficient strategies for producing novel nanocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Herein, a cost-effectiv... Heteroatom doping, precise composition control and rational morphology design are efficient strategies for producing novel nanocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Herein, a cost-effective approach to synthesize nitrogen- and sulfur-codoped carbon nanowire aerogels using a hard templating method is proposed. The aerogels prepared using a combination of hydrothermal treatment and carbonization exhibit good catalytic activity for the ORR in alkaline solution. At the optimal annealing temperature and mass ratio between the nitrogen and sulfur precursors, the resultant aerogels show comparable electrocatalytic activity to that of a commercial Pt/C catalyst for the ORR. Importantly, the optimized catalyst shows much better long-term stability and satisfactory tolerance for the methanol crossover effect. These codoped aerogels are expected to have potential applications in fuel cells. 展开更多
关键词 heteroatom-doped carbons porous nanomaterials aerogels metal-free catalysts oxygen reduction reaction
原文传递
A promising method to recover spent V_(2)O_(5)-WO_(3)/TiO_(2) catalyst: treatment by vanadium-titanium magnetite sintering process
20
作者 Hong-ming Long Yu-dong Zhang +2 位作者 Tao Yang Li-xin Qian Zheng-wei Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2022年第8期1176-1184,共9页
A large number of spent selective catalytic reduction(SCR)denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China.According to the China’s“Directory of Nati... A large number of spent selective catalytic reduction(SCR)denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China.According to the China’s“Directory of National Hazardous Wastes(Version 2021)”,these spent vanadium-tungsten-titanium catalysts are classified as“HW50”hazardous waste,and their disposal and utilization processes have been strictly controlled.Thus,an effective and low-cost technique was developed to treat and utilize these spent SCR catalysts by the vanadium-titanium magnetite sintering process.Effects of adding spent SCR catalysts on the sintering production process and product quality indexes of sinter were studied.The results showed that adding spent SCR catalysts can improve the sintering granulation and green feed permeability,thereby increasing the productivity and flame front speed.When the addition proportion of spent SCR catalysts is less than 1 wt.%,the performance indexes of the finished sinter are basically equal to those of the finished sinter without adding spent SCR catalysts.Further increasing the proportion of spent SCR catalysts to 2.0 wt.%results in a decrease in product quality indexes,which could be attributed to the increase in perovskite content in the finished sinter. 展开更多
关键词 Spent selective catalytic reduction catalyst Hazardous waste Vanadium-titanium magnetite sintering Recovery UTILIZATION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部