期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming 被引量:2
1
作者 Tomas van Haasterecht Marten Swart +1 位作者 Krijn P.de Jong Johannes Hendrik Bitter 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期287-294,共8页
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco... The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior. 展开更多
关键词 Aqueous phase reforming Particle growth catalyst stability Ostwald ripening Leaching Nickel catalysts Particle size effect Support effect
下载PDF
Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction
2
作者 Feifei Sun Shunhe Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期45-51,共7页
The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+... The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2. 展开更多
关键词 AU/TIO2 Au/TiO2-SiO2 PROPYLENE propylene oxide EPOXIDATION catalyst stability
下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:1
3
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 Dry reforming of methane Carbon dioxide Bimetallic catalysts Coke formation catalyst stability
下载PDF
Improved Performance of W/HZSM-5 Catalysts for Dehydroaromatization of Methane
4
作者 Nor Aishah Saidina Amin Kusmiyati 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第3期148-159,共12页
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability we... The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane. 展开更多
关键词 DEHYDROAROMATIZATION METHANE W-supported ZSM-5 partial ion exchange H+ ion Li ion catalyst activity catalyst stability catalyst acidity oxygen presence improved performance
下载PDF
Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines 被引量:3
5
作者 Fenghai Guo Tiebang Zhang +1 位作者 Limin Shi Lin Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1180-1192,共13页
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c... Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles. 展开更多
关键词 Mg-based hydrogen storage alloys Cycle stability Microstructure evolution catalyst stability THERMODYNAMICS
下载PDF
Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane 被引量:2
6
作者 S.Jašo S.Sadjadi +8 位作者 H.R.Godini U.Simon S.Arndt O.Görke A.Berthold H.Arellano-Garcia H.Schubert R.Schomäcker G.Wozny 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期534-543,共10页
Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially M... Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis. 展开更多
关键词 oxidative coupling of methane (OCM) fluidized-bed reactor catalyst stability
下载PDF
Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
7
作者 Lan Yao Hexiang Zhong +2 位作者 Chengwei Deng Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期153-157,共5页
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o... Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions. 展开更多
关键词 Oxygen evolution reaction Co3O4 Non-precious metal catalysts High activity High stability
下载PDF
Effects of synthesis methods on the performance of Pt + Rh/Ce_(0.6)Zr_(0.4)O_2 three-way catalysts 被引量:2
8
作者 Zongcheng Zhan Liyun Song +3 位作者 Xiaojun Liu Jiao Jiao Jinzhou Li Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第3期683-693,共11页
The 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts were fabricated via different methods, including ultrasonic-assisted membrane reduction (UAMR) co-precipitation, UAMR separation precipitation, co-impregnation, an... The 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts were fabricated via different methods, including ultrasonic-assisted membrane reduction (UAMR) co-precipitation, UAMR separation precipitation, co-impregnation, and sequential impregnation. The catalysts were physico-chemically characterized by N2 adsorption, XRD, TEM, and Hz-TPR techniques, and evaluated for three-way catalytic activities with simulated automobile exhaust. UAMR co-precipitation- and UAMR separation precipitation- prepared catalysts exhibited a high surface area and metal dispersion, wide λ window and excellent conversion for NOx reduction under lean conditions. Both fresh and aged catalysts from UAMR- precipitation showed the high surface areas of ca. 60-67 m^2/g and 18-22 m^2/g, respectively, high metal dispersion of 41%-55%, and small active particle diameters of 2.1-2.7 nm. When these catalysts were aged, the catalysts prepared by the UAMR method exhibited a wider working window (△λ = 0.284--0.287) than impregnated ones (△λ = 0.065-0.115) as well as excellent three-way catalytic performance, and showed lower/so (169℃) and T90 (195℃) for NO reduction than the aged catalysts from impregnation processes, which were at 265 and 309℃, respectively. This implied that the UAMR-separation precipitation has important potential for industrial applications to improve catalytic performance and thermal stability. The fresh and aged 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts prepared by the UAMR-separation precipitation method exhibited better catalytic performance than the corresponding catalysts prepared by conventional impregnation routes. 展开更多
关键词 UAMRthree way catalyst Pt and Rh nanoparticles precipitation thermal stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部