期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Preparation and Characterization of Carbon Nanotubes-Coated Cordierite for Catalyst Supports 被引量:4
1
作者 Jianmei Wang Rong Wang Xiujin Yu Jianxin Lin Feng Xie Kemei Wei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期211-216,共6页
The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordier... The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordierite substrate, carbon naontubes, and CNTs-cordierite were characterized by SEM, TEM/HREM, BET, and TGA. The results show that the carbon nanotubes were distributed uniformly on the surface of cordierite. A significant increase in BET surface area and pore volume was observed, and a suitable pore-size distribution was obtained. On the CNTs-cordierite, carbon nanotubes penetrated into the cordierite substrate, which led to a remarkable stability of the CNTs against ultrasound maltreatment. Growth time is an important factor for thermostability and texture of the sample. The mass increased but the purity decreased with the growth time, which caused the exothermic peak shift to low temperature, and the corresponding full width half maximum (FWHM) of the peak in DTG increased. 展开更多
关键词 carbon nanotube CORDIERITE PYROLYSIS ethine catalyst support
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
2
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts 被引量:1
3
作者 Jos L. Figueiredo Manuel F. R. Pereira 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期195-201,共7页
The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electroca... The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed. 展开更多
关键词 carbon xerogels fuel cells ELECTROcatalystS surface chemistry catalyst supports
下载PDF
Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst 被引量:8
4
作者 Wei Jiang Ying Li +3 位作者 Wenfeng Han Yaping Zhou Haodong Tang Huazhang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期443-452,共10页
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t... A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst. 展开更多
关键词 high surface area graphitic carbon materials (HSGCs) supported Ru catalysts ammonia synthesis graphitic degree ball-roJlling
下载PDF
Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation
5
作者 Peipei Ai Li Zhang +2 位作者 Jinchi Niu Huiqing Jin Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期222-229,共8页
Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased supp... Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased support to construct Cu/B-LPC catalyst for dimethyl oxalate(DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu^(+). Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240℃. 展开更多
关键词 HYDROGENATION Cu-based catalyst Boron doping Porous carbon catalyst support ALCOHOL
下载PDF
Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction
6
作者 Yifan Jiang Bingqi Xie Jisong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期165-172,共8页
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ... Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports. 展开更多
关键词 Suzuki-Miyaura reaction Heterogeneous palladium catalysts Activated carbon Thiol-and amino-functionalization catalyst support Packed bed
下载PDF
Effective depolymerization of alkali lignin using an attapulgite-Ce_(0.75)Zr_(0.25)O_(2)(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media
7
作者 Jiajia Chen Xinyu Lu +2 位作者 Dandan Wang Pengcheng Xiu Xiaoli Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期50-62,共13页
Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali ... Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened. 展开更多
关键词 Lignin Biofuel catalyst support Mixing Ce_(0.75)Zr_(0.25)O_(2)solid solution
下载PDF
Endeavors on the development of efficient and sustainable supported metal catalysts for chemical synthesis on solid-liquid interfaces
8
作者 Chao Yang Lifeng Cui 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期1-3,共3页
Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy sepa... Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy separation of product with less metal residue,as well as reusability of the high-cost catalysts.Although great effort has been spent,the precise catalytic mechanism of supported metal-catalyzed reactions has not been clearly elucidated and the development of efficient and stable recyclable catalysts remains challenging.This highlight reveals a“molecular fence”metal stabilization strategy and discloses the metal evolution in Pd-catalyzed C-C bond formation reactions using Nheterocyclic carbene(NHC)-functionalized hypercrosslinked polymer support,wherein the polymeric skeleton isolates or confines the metal species involved in the catalytic reactions,and NHC captures free low-valent metal species in solution and stabilizes them on the support via strong metal-support coordination interaction.This strategy creates a novel route for the development of supported metal catalysts with high stability and provides insights into the reaction mechanism of heterogeneous catalysis. 展开更多
关键词 Supported metal catalysts Hypercrosslinked polymers Molecular fence effect C-C bond Formations
下载PDF
A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity 被引量:8
9
作者 Yan Ju Fengyi Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期313-318,共6页
A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on t... A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support. 展开更多
关键词 carbon nanotube catalyst support catalytic property NI P HYDROGENATION BENZENE
下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:5
10
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 catalyst support C/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
下载PDF
Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions 被引量:13
11
作者 Xiong Su Xiaoli Yang +1 位作者 Bo Zhao Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期854-867,共14页
Reverse water gas shift(RWGS) reaction can be served as a pivotal stage of transitioning the abundant CO;resource into chemicals or hydrocarbon fuels, which is attractive for the CO;utilization and of eventually sig... Reverse water gas shift(RWGS) reaction can be served as a pivotal stage of transitioning the abundant CO;resource into chemicals or hydrocarbon fuels, which is attractive for the CO;utilization and of eventually significance in enabling a rebuilt ecological system for unconventional fuels. This concept is appealing when the process is considered as a solution for the storage of renewable energy, which may also find a variety of potential end uses for the outer space exploration. However, a big challenge to this issue is the rational design of high temperature endurable RWGS catalysts with desirable CO product selectivity. In this work, we present a comprehensive overview of recent publications on this research topic,mainly focusing on the catalytic performance of RWGS reaction over three major kinds of heterogeneous catalysts, including supported metal catalysts, mixed oxide catalysts and transition metal carbides. The reaction thermodynamic analysis, kinetics and mechanisms are also described in detail. The present review attempts to provide a general guideline about the construction of well-performed heterogeneous catalysts for the RWGS reaction, as well as discussing the challenges and further prospects of this process. 展开更多
关键词 RWGS reaction Carbon dioxide hydrogenation Supported metal catalyst Metal oxide Transition metal carbide
下载PDF
Catalytic oxidation of low concentration formaldehyde over Pt/TiO_(2) catalyst 被引量:6
12
作者 Yuan Su Keming Ji +3 位作者 Jiayao Xun Kan Zhang Ping Liu Liang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期190-195,共6页
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnatio... Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h. 展开更多
关键词 catalyst support CATALYSIS FIXED-BED Pt/TiO_(2)
下载PDF
Hydrothermal treatment of metallic-monolith catalyst support with self-growing porous anodic-alumina film 被引量:3
13
作者 Chuanqi Zhang Yuanjing Pu +3 位作者 Feng Wang Hecheng Ren Hua Ma Yu Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1311-1319,共9页
Metallic-monolith catalyst support with self-growing porous anodic alumina(PAA)film was prepared by anodizing Al plate.The effect of hydrothermal treatment(HTT)on the crystalline state and textural properties of PAA f... Metallic-monolith catalyst support with self-growing porous anodic alumina(PAA)film was prepared by anodizing Al plate.The effect of hydrothermal treatment(HTT)on the crystalline state and textural properties of PAA film was investigated by XRD,BET,SEM and TG.The HTT treatment above 50°C and the subsequent calcination above 300°C could convert the amorphous skeleton alumina intoγ-alumina and increase the specific surface area(SBET).However,SEM images showed the HTT modification was a non-uniform process along the thickness of PAA film.The promotion effect of HTT on SBETwas non-linear,and the slope of SBETgradually decreased with the HTT temperature or time increased.The limited HTT effect should be attributed to a changed pore structure caused by an unfavorable pore sealing limitation.Pore widening treatment(PWT)before HTT could break the pore sealing limitation,because of the reduced internal diffusion resistance of hydrothermal reaction.The synergistic combination of PWT and HTT developed a PAA support with a large SBETcomparable to commercialγ-alumina.In the catalytic combustion of toluene,the Pt-based catalyst prepared by using the PWT and HTT comodified PAA support gave higher Pt dispersion and more favorable catalytic activity than that treated by HTT alone.The presence of a bimodal pore structure was suggested to be a decisive reason. 展开更多
关键词 ALUMINA catalyst support HYDROTHERMAL Pore widening treatment Anodization
下载PDF
Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts 被引量:4
14
作者 LiuZM HaoZP 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期289-295,共7页
A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst... A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot. 展开更多
关键词 perovskite type catalysts supported Ag catalyst NOx diesel soot
下载PDF
Effect of Activated Carbon as a Support on Metal Dispersion and Activity ofRuthenium Catalyst for Ammonia Synthesis 被引量:3
15
作者 ZHENG Xiao-ling ZHANG Shu-juan +3 位作者 LIN Jian-xin XU Jiao-xing FU Wu-jun WEI Ke-mei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期448-452,共5页
Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and th... Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst. 展开更多
关键词 Activated carbon RUTHENIUM Supported catalyst Ammonia synthesis
下载PDF
The surface properties of aluminated meso–macroporous silica and its catalytic performance as hydrodesulfurization catalyst support 被引量:2
16
作者 Zhi-Gang Wang Jia-Ning Pei +5 位作者 Sheng-Li Chen Zheng Zhou Gui-Mei Yuan Zhi-Qing Wang Guo-Qiang Ren Hong-Jun Jiang 《Petroleum Science》 SCIE CAS CSCD 2017年第2期424-433,共10页
Aluminated mesoporous silica was prepared by multiple post-grafting of alumina onto uniform mesoporous SiO2 ,which was assembled from monodisperse SiO2 microspheres.Hydrodesulfurization(HDS)catalyst was prepared by ... Aluminated mesoporous silica was prepared by multiple post-grafting of alumina onto uniform mesoporous SiO2 ,which was assembled from monodisperse SiO2 microspheres.Hydrodesulfurization(HDS)catalyst was prepared by loading Ni and Mo active components onto the aluminated uniform mesoporous SiO2 ,and its HDS catalytic performance was evaluated using hydrodesulfurization of dibenzothiophene as the probe reaction at 300℃ and 6.0 MPa in a tubular reactor.The samples were characterized by N2 physisorption,scanning electronic microscopy,Fourier transform infrared spectrum,X-ray diffraction(XRD),temperature-programmed desorption of ammonia(NH3-TPD),^27Al nuclear magnetic resonance(^27Al-NMR)and high-resolution transmission electron microscopy(HRTEM).The results showed that the Si–OH group content of SiO2 was mainly dependent on the pretreatment conditions and had significant influence on the activity of the Ni Mo catalyst.The surface properties of the aluminated SiO2 varied with the Al2O3-grafting cycles.Generally after four cycles of grafting,the aluminated SiO2 behaved like amorphous alumina.In addition,plotting of activity of Ni Mo catalysts supported on aluminated meso–macroporous silica materials against the Al2O3-grafting cycle yields a volcano curve. 展开更多
关键词 Aluminum grafting Hydrodesulfurization Surface properties catalyst support SIO2
下载PDF
Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over supported Nickel Catalyst 被引量:3
17
作者 Ling QIAN, Zi Feng YAN State Key Laboratory for Heavy Oil Processing, University of Petroleum, Dongying 257061 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第10期1081-1084,共4页
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the form... The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in one kind of adsorption state. Then the mechanism of interaction between the species dissociated from CH4 and CO2 during reforming was proposed. 展开更多
关键词 ADSORPTION DISSOCIATION supported nickel catalyst METHANE carbon dioxide reforming.
下载PDF
Effect of Lanthanum on Methanol Fuel Exhaust Deep Oxidation over Palladium Catalyst 被引量:3
18
作者 王幸宜 万颖 卢冠忠 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第1期51-54,共4页
The performance of deep oxidation of methanol on supported Pd catalyst was exami ned by a chromatograph-micro-reactor. The results show that the add ition of La into γ-Al 2O 3 support can affect greatly the perform... The performance of deep oxidation of methanol on supported Pd catalyst was exami ned by a chromatograph-micro-reactor. The results show that the add ition of La into γ-Al 2O 3 support can affect greatly the performance of t he Pd catalyst. In the absence of CO, La can decrease the content of oxygen-c ontaining intermediate, although La can not lower the light-off temperature of methanol oxidation. In the presence of CO, La can lower the light-off tem perature, decrease the amount of CO adsorption, and weaken evidently 'CO inhibi tion' to the oxidation of methanol. By XPS technique, it is shown that La modi fies the electronic structure of Pd, which attributes to the modifications of th e catalytic performance. 展开更多
关键词 supported palladium catalyst m ethanol oxidation LANTHANUM rare earths
下载PDF
Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts 被引量:3
19
作者 A.Emamdoust V.La Parola +3 位作者 G.Pantaleo M.L.Testa S.Farjami Shayesteh A.M.Venezia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期1-9,I0001,共10页
Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS a... Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS analyses and they were tested in partial oxidation of methane(CPO). The catalytic reaction was carried out at atmospheric pressure in a temperature range of 400–800℃ with a feed gas mixture containing methane and oxygen in a molecular ratio CH4/O2=2. The Ni catalyst exhibited 60% methane conversion with 60% selectivity to CO already at 500℃. On the contrary, the Ni–Ce catalyst was inert to CPO up to 700℃. Moreover, the former catalyst reproduced its activity at the descending temperatures maintaining a good stability at 600℃, over a reaction time of 80 h, whereas the latter one completely deactivated. Test of CH4 temperature programmed surface reaction(CH4-TPSR) revealed a higher methane activation temperature(> 100℃) for the Ni–Ce catalyst as compared to the Ni one. Noticeable improvement of the ceria containing catalyst occurred when the reaction test started at a temperature higher than the methane decomposition temperature. In this case, the sample achieved the same catalytic behavior of the Ni catalyst. As confirmed by XPS analyses, the distinct electronic state of the supported nickel was responsible for the differences in catalytic behavior. 展开更多
关键词 Methane catalytic partial oxidation(CPO) Ni catalyst NICE SiO2 supported catalysts
下载PDF
Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO_(2) reduction 被引量:5
20
作者 Bishnupad Mohanty Suddhasatwa Basu Bikash Kumar Jena 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期444-471,I0012,共29页
The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain t... The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting CO_(2) into other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of CO_(2) to the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of CO_(2) to CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CO_(2) RR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CO_(2)RR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical CO_(2) conversions and highlight the opportunities and challenges. 展开更多
关键词 CO_(2)RR Single-atom catalyst SACs Dual-atom catalyst DACs Transition metals Support catalysts
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部