期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Water oxidation catalytic ability of polypyridine complex containing a μ-OH, μ-O_2 dicobalt(iii) core
1
作者 Junqi Lin Baochun Ma +1 位作者 Mindong Chen Yong Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期463-471,共9页
Two polypyridine complexes containingμ‐OH,μ‐O2dicobalt(III)cores,[(TPA)CoIII(μ‐OH)(μ‐O2)CoIII(TPA)](ClO4)3and[(BPMEN)CoIII(μ‐OH)(μ‐O2)CoIII(BPMEN)](ClO4)3(TPA=tris(2‐pyridylmethyl)amine,BPMEN=N,N′‐dimet... Two polypyridine complexes containingμ‐OH,μ‐O2dicobalt(III)cores,[(TPA)CoIII(μ‐OH)(μ‐O2)CoIII(TPA)](ClO4)3and[(BPMEN)CoIII(μ‐OH)(μ‐O2)CoIII(BPMEN)](ClO4)3(TPA=tris(2‐pyridylmethyl)amine,BPMEN=N,N′‐dimethyl‐N,N′‐bis(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine),have previously been reported as inactive in the light‐driven water oxidation reaction(ACS Catal.,2016,6,5062?5068).Herein,another dicobalt(III)compound,μ‐OH,μ‐O2‐[{(enN4)2Co2}](ClO4)3(enN4=1,6‐bis(2‐pyridyl‐2,5‐diazaocta‐2,6‐diene),with a similar core structure was synthesized,characterized,and applied to the light‐driven water oxidation reaction.Collective experiments showed that the complex itself was also inactive in the light‐driven water oxidation,and that the activity observed originated from Co(II)impurities.This research establishes that complexes possessing aμ‐OH,μ‐O2dicobalt(III)core structure are not appropriate choices for true molecular catalysts ofwater oxidation. 展开更多
关键词 Water oxidation PHOTOCATALYSIS catalytic ability Cobalt oxide COMPLEX
下载PDF
Influences of chemical reactions on polysulfide reduction reaction process on promotor surface in Li-S batteries
2
作者 Yufeng Luo Zhenhan Fang +8 位作者 Zixin Hong Shaorong Duan Haitao Liu Hengcai Wu Qunqing Li Yuegang Zhang Shoushan Fan Wenhui Duan Jiaping Wang 《Nano Research》 SCIE EI CSCD 2024年第4期2712-2718,共7页
Polar promotors have been proven effective in catalyzing the polysulfide(PS)reduction reaction(PSRR)process in lithium-sulfur(Li-S)batteries.However,the promotor surface tends to be poisoned due to the accumulation of... Polar promotors have been proven effective in catalyzing the polysulfide(PS)reduction reaction(PSRR)process in lithium-sulfur(Li-S)batteries.However,the promotor surface tends to be poisoned due to the accumulation of insoluble discharging products of lithium disulfide(Li_(2)S_(2))and lithium sulfide(Li_(2)S)during Li-S battery operation.Herein,we investigate the detailed PSRR mechanism on the surface of manganese sulfides(MnS)as a representative promoter by performing in-situ Raman mapping measurements.The catalytic ability of MnS enables thorough electrochemical reduction of PSs to Li_(2)S_(2) and Li_(2)S on the MnS surface.The generated Li_(2)S_(2) and Li_(2)S then adsorb the dissolved PSs via chemical reactions among sulfur species during the subsequent PSRR process.This phenomenon mitigates promotor poisoning and continuously improves the reversible capacity.Consequently,the assembled Li-S cell demonstrates excellent electrochemical performance after introducing a conductive interlayer containing a thin piece of carbon nanotube film and MnS promotors. 展开更多
关键词 promotors POLYSULFIDES chemical reactions catalytic ability in-situ Raman measurements
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部