In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquin...In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquinone(HNQ)\} with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, ~ 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.展开更多
A new crown ether appended Fe(Ⅲ) porphyrin complex was prepared by sulfuryl chloride appended benzo-15-crown-5 to the meso position of meso-5,10,15,20-tetra(4-hydrophenyl)porphyrin,and it was applied to catalytic...A new crown ether appended Fe(Ⅲ) porphyrin complex was prepared by sulfuryl chloride appended benzo-15-crown-5 to the meso position of meso-5,10,15,20-tetra(4-hydrophenyl)porphyrin,and it was applied to catalytic oxidation of cyclohexene with molecular oxygen without reductant,showing a remarkable catalytic activity(conversion is up to 94%) and selectivity for 2-cyclohexen-1-ol(73%).展开更多
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentratio...OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.展开更多
文摘In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquinone(HNQ)\} with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, ~ 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.
基金the National Natural Science Foundation of China(No51063006)the Key Subject Foundation of Tianshui Normal University(NoTSA0818)for providing financial support for this project
文摘A new crown ether appended Fe(Ⅲ) porphyrin complex was prepared by sulfuryl chloride appended benzo-15-crown-5 to the meso position of meso-5,10,15,20-tetra(4-hydrophenyl)porphyrin,and it was applied to catalytic oxidation of cyclohexene with molecular oxygen without reductant,showing a remarkable catalytic activity(conversion is up to 94%) and selectivity for 2-cyclohexen-1-ol(73%).
基金financially supported by the National Natural Science Foundation of China (No. 21422706)the Program of the Ministry of Science and Technology of China (No. 2012AA062702)
文摘OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.
基金supported by the National Natural Science Foundation of China(21006081,20976043)Natural Science Foundation of Hu-nan Province(11JJ3024,09JJ8002)+2 种基金Scientific Research Fund of Hunan Provincial Education Department(11B122)Scientificand Technological Plan Projec tof Hunan Province(2010JT4051)Program for New Century Excellent Talents in University(NCET-10-0168)~~