期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History,challenges,and prospects
1
作者 Da-Ming Gao Xun Zhang +5 位作者 Haichao Liu Hidemi Fujino Tingzhou Lei Fuan Sun Jie Zhu Taoli Huhe 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期435-453,共19页
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and... The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date. 展开更多
关键词 Rare sugars ISOMERIZATION KETONIZATION EPIMERIZATION catalytic transformation
下载PDF
Acidity Evaluation of Industrially Dealuminated Y Zeolite via Methylcyclohexane Transformation
2
作者 Hou Kaige Qin Bo +3 位作者 Han Junjie Du Yanze Ma Jinghong Li Ruifeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期50-57,共8页
The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commer... The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1). 展开更多
关键词 methylcyclohexane catalytic transformation industrially modified Y zeolite zeolitic acidity strong protonic sites spectroscopic technology
下载PDF
In situ Fourier Transform Infrared Spectroscopy Diagnostic for Characterization and Performance Test of Catalysts
3
作者 Patrick Mountapmbeme Kouotou 田振玉 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期513-520,I0001,共9页
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior... The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts. 展开更多
关键词 In situ Fourier transform infrared spectroscopy Diagnostic Thermal stability Redox property catalytic mechanism
下载PDF
A highly accessible copper single-atom catalyst for wound antibacterial application 被引量:1
4
作者 Yue Zhao Yunpeng Yu +8 位作者 Feng Gao Zhiyuan Wang Wenxing Chen Cai Chen Jia Yang Yancai Yao Junyi Du Chao Zhao Yuen Wu 《Nano Research》 SCIE EI CSCD 2021年第12期4808-4813,共6页
Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions.In this paper,a highly accessible copper single-atom catalyst(Cu SAC)supported by biocompatible N-doped mes... Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions.In this paper,a highly accessible copper single-atom catalyst(Cu SAC)supported by biocompatible N-doped mesoporous carbon nanospheres was synthesized with the emulsion-template method.The tightly anchored copper single-atom of the catalyst could effectively transform O_(2) into O_(2)−•under ambient conditions by the ultra-large pore size(~23.80 nm)and small particle size(~97.71 nm).Due to multiple synergistically oxidative damages to biomolecules,the Cu SAC could be employed to eliminate different bacteria in vitro without the generation of multidrug resistance(MDR).Moreover,the Cu SAC could also promote wound healing in vivo by eradicating the propagation of bacteria at wound.It is envisioned that the Cu SAC with superior antibacterial performance could be applied in the treatment of related bacterial infection in future. 展开更多
关键词 copper single-atom catalyst mesoporous carbon nanospheres catalytic transformation of oxygen oxidative stress bacterial infection healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部