期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode
1
作者 穆叶 张振松 +5 位作者 王红波 曲大龙 吴宇坤 严萍瑞 李传南 赵毅 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期132-135,共4页
It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organi... It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multi- layer Cs2CO3/AI/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4callA and 12.1 1m/W at a practical brightness of lO00cd/m2 at low voltage of 4 V. 展开更多
关键词 OLEDs Top-Emitting White Organic Light-Emitting Diodes based on Cu as Both Anode and cathode CU
下载PDF
Facile construction of a multilayered interface for a durable lithium‐rich cathode
2
作者 Zhou Xu Yifei Yuan +8 位作者 Qing Tang Xiangkun Nie Jianwei Li Qing Sun Naixuan Ci Zhenjie Xi Guifang Han Lijie Ci Guanghui Min 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期74-87,共14页
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ... Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries. 展开更多
关键词 lattice oxygen release lithium‐rich manganese‐based oxide cathodes reconstructed multilayer interface spinel phase transition‐metal ion migration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部