Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promis...Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promising method for CO_2 reduction produced during anaerobic digestion(AD) and leads to minimize the cost of biogas upgrading technology. In this study, the MEC-AD coupled reactor was used to generate and utilize the endogenous hydrogen by employing biocompatible electrodeposited cobalt-phosphate as catalysts to improve the performance of stainless steel mesh and carbon cloth electrodes. In addition, the modified version of ADM1 model(ADM1 da) was used to simulate the process. The result indicated that the MEC-AD coupled reactor can improve the CH_4 yield and production rate significantly. The CH_4 yield was enhanced with an average of 48% higher than the control. The CH_4 production rate was also increased 1.65 times due to the utilization of endogenous hydrogen.The specific yield, flow rate, content of CH_4, and p H value were the variables that the model was best at predicting(with indexes of agreement: 0.960/0.941, 0.682/0.696, 0.881/0.865, and 0.764/0.743) of the process with SSmeshes 80/SS-meshes 200, respectively. Employing the catalyzed SS mesh cathode, in the MEC-AD coupled reactor, could be an effective approach to generate and facilitate the utilization of endogenous hydrogen in anaerobic digestion of CH_4 production technology, which is a promising and feasible method to scale up to the industrial level.展开更多
This paper compared the degradation efficiency of sludge organic matters and electric-production by two typical microbial fuel cells——dual-chamber microbial fuel cell(DMFC)and single chamber air cathode microbial fu...This paper compared the degradation efficiency of sludge organic matters and electric-production by two typical microbial fuel cells——dual-chamber microbial fuel cell(DMFC)and single chamber air cathode microbial fuel cell(SAMFC),and the variations of sludge protein,polysaccharide and ammonia nitrogen within the systems were also investigated.The results showed that the concentration of sludge soluble chemical oxygen demand,protein and carbohydrate of DMFC are higher than these of SAMFC during the systems operation,while DMFC can achieve a better ammonia nitrogen removal than SAMFC.Under the same operation condition,the stable voltage output of DMFC and SAMFC is 0.61 V and 0.37 V;the maximum power density of DMFC and SAMFC is 2.79 W/m3and 1.25 W/m3;TCOD removal efficiency of DMFC and SAMFC is 34.14%and 28.63%for 12 d,respectively.Meanwhile,DMFC has a higher coulomb efficiency than SAMFC,but both are less than5%.The results showed that DMFC present a better performance on sludge degradation and electric-production.展开更多
基金Supported by the State Key Development Program for Basic Research of China(2013CB733501)the National Natural Science Foundation of China(21476106)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20130062)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(PPZY2015A044)
文摘Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promising method for CO_2 reduction produced during anaerobic digestion(AD) and leads to minimize the cost of biogas upgrading technology. In this study, the MEC-AD coupled reactor was used to generate and utilize the endogenous hydrogen by employing biocompatible electrodeposited cobalt-phosphate as catalysts to improve the performance of stainless steel mesh and carbon cloth electrodes. In addition, the modified version of ADM1 model(ADM1 da) was used to simulate the process. The result indicated that the MEC-AD coupled reactor can improve the CH_4 yield and production rate significantly. The CH_4 yield was enhanced with an average of 48% higher than the control. The CH_4 production rate was also increased 1.65 times due to the utilization of endogenous hydrogen.The specific yield, flow rate, content of CH_4, and p H value were the variables that the model was best at predicting(with indexes of agreement: 0.960/0.941, 0.682/0.696, 0.881/0.865, and 0.764/0.743) of the process with SSmeshes 80/SS-meshes 200, respectively. Employing the catalyzed SS mesh cathode, in the MEC-AD coupled reactor, could be an effective approach to generate and facilitate the utilization of endogenous hydrogen in anaerobic digestion of CH_4 production technology, which is a promising and feasible method to scale up to the industrial level.
基金Sponsored by the National Natural Science Key Foundation of China(Grant No.51206036)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201192)+1 种基金State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology(Grant No.2013DX04)
文摘This paper compared the degradation efficiency of sludge organic matters and electric-production by two typical microbial fuel cells——dual-chamber microbial fuel cell(DMFC)and single chamber air cathode microbial fuel cell(SAMFC),and the variations of sludge protein,polysaccharide and ammonia nitrogen within the systems were also investigated.The results showed that the concentration of sludge soluble chemical oxygen demand,protein and carbohydrate of DMFC are higher than these of SAMFC during the systems operation,while DMFC can achieve a better ammonia nitrogen removal than SAMFC.Under the same operation condition,the stable voltage output of DMFC and SAMFC is 0.61 V and 0.37 V;the maximum power density of DMFC and SAMFC is 2.79 W/m3and 1.25 W/m3;TCOD removal efficiency of DMFC and SAMFC is 34.14%and 28.63%for 12 d,respectively.Meanwhile,DMFC has a higher coulomb efficiency than SAMFC,but both are less than5%.The results showed that DMFC present a better performance on sludge degradation and electric-production.