The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Uti...The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.展开更多
Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for m...Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.展开更多
Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
Platforms I and II are steel structures located in offshore areas southeast of the Zhujiang (Pearl) River Delta, the northern South China Sea,. in about 110 in water depth. The jackets, with aluminum sacrificial anode...Platforms I and II are steel structures located in offshore areas southeast of the Zhujiang (Pearl) River Delta, the northern South China Sea,. in about 110 in water depth. The jackets, with aluminum sacrificial anodes for cathodic protection (CP) of the immersed zone, were launched in March 1995. In May 096 a CP survey showed that, after almost one year of service, a low polarization level had been achieved and some extended unprotected zones existed; mainly in the deepest part of the Platform II. Further to this, a joint activity was decided in order to assess the need of a possible retrofitting of the CP systems. The results of the activity carried out are dealt with, including technical and economical comparisons amongst several retrofitting options, both with sacrificial anodes and with impressed current systems. The adopted solution is illustrated and data are reported on the level of protection presently achieved.展开更多
Fracture behaviour of low-alloy steels AIST4340,HY100,Welten60,AISIA537 and A131 in artificial seawater under static,cyclic loading and at cathodic protection potential has been investigated by using the techniques of...Fracture behaviour of low-alloy steels AIST4340,HY100,Welten60,AISIA537 and A131 in artificial seawater under static,cyclic loading and at cathodic protection potential has been investigated by using the techniques of fracture mechanics, electrochemistry and electronfractography.The results reveal that at hydrogen evolution potentials(cathodic pro- tection potential)the critical yield strength required for the occurrance of SCC decreases from 985 at corrosion potential(E_c)to 872 MPa.The effect of cathodic protection on crack propagation of corrosion fatigue(CF)is not simple,it is closely related to the yield strength of steels and their SCC behaviour.For the steels with high yield strength,cathodic protection promotes(da/dN)_Ⅱ evidently,and reduces △K_(th) value.The(da/dN)-△K curves dis- play a plateau at the third stage of CF for steels with medium or low yield strength.It is men- tioned that the cathodic protection potential for oceaneering constructures should be control- led at top level of the protective range.It seems reasonable that the strength of steel for oceaneeing use might be increased by 200 or 300 MPa.展开更多
The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacr...The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.展开更多
The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosiv...The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosive seawater, and thick fouling organism attachments. The design and effectiveness of galvanic anode protection system are presented, and several methods are described, which are the calculation method of the protective current density considering the variation of water depth, the method of determining protection parameters considering various factors, the arrangement of anodes based on potential distribution and current requirements at different water depths, and the method of anode installation. Finally the effect of the accuracy of selected cathodic protection parameters on the economic benefits of offshore projects is also discussed..展开更多
The behavior of a new type of secondary anode material made of carbon fiber reinforced cement used for cathodic protection of steel in concrete was studied. The mechanical, electrical and electrochemical properties of...The behavior of a new type of secondary anode material made of carbon fiber reinforced cement used for cathodic protection of steel in concrete was studied. The mechanical, electrical and electrochemical properties of this conductive mortar were investigated. Results indicate that the addition of carbon fiber enhances the strength and ductility of the mortar, as well as the electrical property. The anodic polarization behavior was tested on specimens immersed in aqueous solutions of saturated Ca(OH)2 in the presence or absence of 3% NaCl. Based on impedance measurements the electrochemical parameters of conductive mortar were calculated. It is shown that the investigated conductive mortar can be used in cathodic protection of reinforced concrete. The study also shows that the optimum fiber content in mortar should be in the range from 0.5 vol% to 0.7 vol%.展开更多
This paper introduces the research status and present situation of application of Pt/Ta composite anode materials for cathodic protection in China. It also introduces the corrosion resistance, bending properties and e...This paper introduces the research status and present situation of application of Pt/Ta composite anode materials for cathodic protection in China. It also introduces the corrosion resistance, bending properties and electrochemical performance in seawater and freshwater of the Pt/Ta composite anode materials for cathodic protection. It points out that compared with other platinum composite anodes, the Pt/Ta composite anode has the advantage of small volume, light weight, big drainage rate, long service life, it possesses superiority to be used in the confluence environment of sea water and fresh water and in the medium condition of resistivity changes at all times.展开更多
The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu 2 O nanoparticles on the surface of TiO 2 nanotubes via anodic oxidation and constant current deposition.Field emission scannin...The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu 2 O nanoparticles on the surface of TiO 2 nanotubes via anodic oxidation and constant current deposition.Field emission scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)analyses showed that Cu 2 O nanoparticles not only deposited on the surface of TiO 2 nanotube array,but also on the wall of TiO 2 nanotubes.The Cu 2 O deposition amount could be adjusted by changing the deposition time.The photoelectrochemical cathodic protection(PECCP)performance of the prepared photoelectrodes for 316L stainless steel(SS)was tested under visible light.The constant current deposition time had a signifi cant eff ect on the PECCP performance of Cu 2 O/TiO 2-X photoelectrodes and Cu 2 O/TiO 2-20 had the best PECCP performance for the coupled 316L SS.This was attributed to the appropriate amount and thickness of Cu 2 O to form p-n heterojunctions with TiO 2,in which separation of the photogenerated carriers was accelerated and transfer of the photogenerated electrons to 316L SS for PECCP was facilitated.展开更多
The long and short fatigue crack growth (FCG) behavior of 12CrNi3MoV (S1) and 10CrNi5MoV(S2) steel was investigated at cathodic protection in 3.5 % NaCl solution and artificial seawater. The results indicate that l...The long and short fatigue crack growth (FCG) behavior of 12CrNi3MoV (S1) and 10CrNi5MoV(S2) steel was investigated at cathodic protection in 3.5 % NaCl solution and artificial seawater. The results indicate that long and short FCG show different behavior at cathodic protection. Short FCG is apparently hindered at appropriate cathodic protection potential (-900 mV SCE) and accelerated at over protection potential(-1200 mV SCE). Cathodic protection increases long FCG rate, and the more negative the cathodic protection potential, the greater the long FCG rate. At the same amplitude of stress intensity ( ΔK ), short FCG rate is greater than the long one and their difference becomes less at cathodic protection. The FCG rate in 3.5 % NaCl solution is greater than in artifitial seawater. The FCG rate of S2 steel is bigger then that of S1 steel. The FCG rate of weld bond of S2 steel is lower than that of parent metal and weld beam. In above cases, the anode dissolution, the wedging of corrosion products or deposit and hydrogen embrittlement in long and hort crack tip are also discussed.展开更多
A new type of photoelectrochemical cathodic protection technology(a combination of seawater corrosion and biological fouling resistance)is being actively researched to alleviate the serious corrosion of marine metal m...A new type of photoelectrochemical cathodic protection technology(a combination of seawater corrosion and biological fouling resistance)is being actively researched to alleviate the serious corrosion of marine metal materials.At present,there is almost no research on anti-corrosion and anti-fouling dual functional materials.In this paper,Cu_(2)ZnSnS_(4)is attached to the surface of TiO,nanotubes through a one-step hydrothermal method for modification.The results indicate that when the hydrothermal reaction time is 24 h,Cu_(2)ZnSnS_(4)/TiO_(2)nanocomposite material exhibits excellent performance in coupling with the protected 304 SS,with its open circuit potential shifts negatively to-1.04 V.This material improves the separation efficiency of photogenerated electrons and effectively improves the photochemical cathodic protection of 304 stainless steel.The high removal rate of Staphylococcus aureus(up to 93%)of the as-prepared samples also proved that it has the effect of the anti-biological fouling.展开更多
In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed ...The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment.展开更多
A rectangle crevice assembly was used to study the effects of cathodic protection (CP) potential, crevice thickness, holiday size, bubbling CO2, and surface condition on the chemical and electrochemical environment ...A rectangle crevice assembly was used to study the effects of cathodic protection (CP) potential, crevice thickness, holiday size, bubbling CO2, and surface condition on the chemical and electrochemical environment of the local solution under disbonded coatings. It is found that the cathodic protection removes dissolved oxygen from the crevice and thus shifts the solution to a more al- kaline state. Furthermore, the potential of the steel reaches the protected potential range. The available protection distance increases with the negative applying potential. The steady potential and pH distribution are easily achieved, but the polarization degree is not satisfied within the thinner crevice. The difference in the solution environment is found to correlate to the holiday size. The smaller the holiday, the smaller the difference is. The presence of CO2 inhibits the formation of an alkaline environment. It is also found that the rust layer dramatically decreases the polarization rate in the crevice.展开更多
With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a ...With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vo1% NaCI aqueous solution. The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosion potential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.展开更多
Offshore platforms are always subjected to wave action which is random variable amplitude cyclic loading. In order to simulate the stressing condition at the 'hot spot' of the tubular joints and the marine env...Offshore platforms are always subjected to wave action which is random variable amplitude cyclic loading. In order to simulate the stressing condition at the 'hot spot' of the tubular joints and the marine environment, random variable amplitude fatigue tests have been carried out on welded plate joints in sea water. The tests have been conducted under the conditions of loading frequency of 0.2 Hz/, stress ratio of -1, seawater temperature of about 20°C and cathodic protection with the potential about -850 mV, SCE. The test results have been compared with the seawater corrosion fatigue life under constant amplitude loading. Miner's linear cumulative damage summation rule has been used to predict the corrosion fatigue life under variable amplitude loading. The predicted life is in good agreement with the test data.展开更多
This paper presents the detail design conditions, design criteria and methods as well as design conclusions of the process, structure and corrosion of the production flowlines and high pressure water injection lines i...This paper presents the detail design conditions, design criteria and methods as well as design conclusions of the process, structure and corrosion of the production flowlines and high pressure water injection lines in BZ34-2 / 4 oil field in Bohai Bay. At present this design represents the design capability and level in the field of the submarine pipeline engineering of China.展开更多
To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electro...To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electromigration accelerated corrosion tests were used to evaluate the effectiveness of self-made zinc alloy anode with the help of relevant cathodic protection guidelines and evaluation criteria for the corrosion of reinforcement in concrete.The results showed that the protection was effective because the potential of the zinc alloy anode protection steel bar in the salt solution satis?ed the“-780 mV(SCE)”validity criterion.The self-corrosion potential(E_(corr))of the sacri?cial anode protection steel in concrete was greater than-276 mV,and the protective current density of the zinc alloy anode was 1-3μA·cm^(-2),which met the standards of EN12696-2000,further indicating that the self-made zinc alloy sacri?cial anode had a good protection combining with the polarization resistance and the appearance of the corroded surface of the steel in concrete.The microscopic morphology of the corroded surface and the composition of the corrosion products indicates that the mortar of the self-made zinc alloy anode has a lower pH than the imported anodes,so the long-term protection of the selfmade zinc alloy sacri?cial anode needs to be further improved.展开更多
Pipeline is a key segment in the transportation of city gas and its safety affec ts the safety of industrial and domestic application. The characteristics of Shi Dongkou east gas steel pipeline buried in soil were dis...Pipeline is a key segment in the transportation of city gas and its safety affec ts the safety of industrial and domestic application. The characteristics of Shi Dongkou east gas steel pipeline buried in soil were discussed and its parameters related to safety were measured, including the state of anticorrosiv e layer, the soil resistivity, the natural potential and the protective potential of gas pipeline. The experimental result s were confirmed by excavating, which are of value to the knowledge of the gas pipeline buried in soil in Shanghai. The experimental data were analyzed which provide the scientific basis for the assurance of the gas pipeline safety and the reparation of anticorrosivelayer.展开更多
基金Projects(52471096,51971191)supported by the National Natural Science Foundation of ChinaProject(S202410530205)supported by the College Students Innovation and Entrepreneurship Training Program of Hunan Province,ChinaProject(S202310530029)supported by the National College Students Innovation and Entrepreneurship Training Program,China。
文摘The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.
基金supported by National Natural Science Foundation of China(Grant no.41506093)
文摘Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
文摘Platforms I and II are steel structures located in offshore areas southeast of the Zhujiang (Pearl) River Delta, the northern South China Sea,. in about 110 in water depth. The jackets, with aluminum sacrificial anodes for cathodic protection (CP) of the immersed zone, were launched in March 1995. In May 096 a CP survey showed that, after almost one year of service, a low polarization level had been achieved and some extended unprotected zones existed; mainly in the deepest part of the Platform II. Further to this, a joint activity was decided in order to assess the need of a possible retrofitting of the CP systems. The results of the activity carried out are dealt with, including technical and economical comparisons amongst several retrofitting options, both with sacrificial anodes and with impressed current systems. The adopted solution is illustrated and data are reported on the level of protection presently achieved.
文摘Fracture behaviour of low-alloy steels AIST4340,HY100,Welten60,AISIA537 and A131 in artificial seawater under static,cyclic loading and at cathodic protection potential has been investigated by using the techniques of fracture mechanics, electrochemistry and electronfractography.The results reveal that at hydrogen evolution potentials(cathodic pro- tection potential)the critical yield strength required for the occurrance of SCC decreases from 985 at corrosion potential(E_c)to 872 MPa.The effect of cathodic protection on crack propagation of corrosion fatigue(CF)is not simple,it is closely related to the yield strength of steels and their SCC behaviour.For the steels with high yield strength,cathodic protection promotes(da/dN)_Ⅱ evidently,and reduces △K_(th) value.The(da/dN)-△K curves dis- play a plateau at the third stage of CF for steels with medium or low yield strength.It is men- tioned that the cathodic protection potential for oceaneering constructures should be control- led at top level of the protective range.It seems reasonable that the strength of steel for oceaneeing use might be increased by 200 or 300 MPa.
文摘The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.
文摘The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosive seawater, and thick fouling organism attachments. The design and effectiveness of galvanic anode protection system are presented, and several methods are described, which are the calculation method of the protective current density considering the variation of water depth, the method of determining protection parameters considering various factors, the arrangement of anodes based on potential distribution and current requirements at different water depths, and the method of anode installation. Finally the effect of the accuracy of selected cathodic protection parameters on the economic benefits of offshore projects is also discussed..
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070247063)National Natural Science Foundation of China (No. 50978200)
文摘The behavior of a new type of secondary anode material made of carbon fiber reinforced cement used for cathodic protection of steel in concrete was studied. The mechanical, electrical and electrochemical properties of this conductive mortar were investigated. Results indicate that the addition of carbon fiber enhances the strength and ductility of the mortar, as well as the electrical property. The anodic polarization behavior was tested on specimens immersed in aqueous solutions of saturated Ca(OH)2 in the presence or absence of 3% NaCl. Based on impedance measurements the electrochemical parameters of conductive mortar were calculated. It is shown that the investigated conductive mortar can be used in cathodic protection of reinforced concrete. The study also shows that the optimum fiber content in mortar should be in the range from 0.5 vol% to 0.7 vol%.
文摘This paper introduces the research status and present situation of application of Pt/Ta composite anode materials for cathodic protection in China. It also introduces the corrosion resistance, bending properties and electrochemical performance in seawater and freshwater of the Pt/Ta composite anode materials for cathodic protection. It points out that compared with other platinum composite anodes, the Pt/Ta composite anode has the advantage of small volume, light weight, big drainage rate, long service life, it possesses superiority to be used in the confluence environment of sea water and fresh water and in the medium condition of resistivity changes at all times.
基金Supported by the National Natural Science Foundation of China(Nos.41576114,41676069)the State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute,China(No.614290101011703)the Qingdao Innovative Leading Talent Foundation(No.15-10-3-15-(39)-zch)。
文摘The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu 2 O nanoparticles on the surface of TiO 2 nanotubes via anodic oxidation and constant current deposition.Field emission scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)analyses showed that Cu 2 O nanoparticles not only deposited on the surface of TiO 2 nanotube array,but also on the wall of TiO 2 nanotubes.The Cu 2 O deposition amount could be adjusted by changing the deposition time.The photoelectrochemical cathodic protection(PECCP)performance of the prepared photoelectrodes for 316L stainless steel(SS)was tested under visible light.The constant current deposition time had a signifi cant eff ect on the PECCP performance of Cu 2 O/TiO 2-X photoelectrodes and Cu 2 O/TiO 2-20 had the best PECCP performance for the coupled 316L SS.This was attributed to the appropriate amount and thickness of Cu 2 O to form p-n heterojunctions with TiO 2,in which separation of the photogenerated carriers was accelerated and transfer of the photogenerated electrons to 316L SS for PECCP was facilitated.
文摘The long and short fatigue crack growth (FCG) behavior of 12CrNi3MoV (S1) and 10CrNi5MoV(S2) steel was investigated at cathodic protection in 3.5 % NaCl solution and artificial seawater. The results indicate that long and short FCG show different behavior at cathodic protection. Short FCG is apparently hindered at appropriate cathodic protection potential (-900 mV SCE) and accelerated at over protection potential(-1200 mV SCE). Cathodic protection increases long FCG rate, and the more negative the cathodic protection potential, the greater the long FCG rate. At the same amplitude of stress intensity ( ΔK ), short FCG rate is greater than the long one and their difference becomes less at cathodic protection. The FCG rate in 3.5 % NaCl solution is greater than in artifitial seawater. The FCG rate of S2 steel is bigger then that of S1 steel. The FCG rate of weld bond of S2 steel is lower than that of parent metal and weld beam. In above cases, the anode dissolution, the wedging of corrosion products or deposit and hydrogen embrittlement in long and hort crack tip are also discussed.
基金Projects(42106051,U2106206)supported by the National Natural Science Foundation of China。
文摘A new type of photoelectrochemical cathodic protection technology(a combination of seawater corrosion and biological fouling resistance)is being actively researched to alleviate the serious corrosion of marine metal materials.At present,there is almost no research on anti-corrosion and anti-fouling dual functional materials.In this paper,Cu_(2)ZnSnS_(4)is attached to the surface of TiO,nanotubes through a one-step hydrothermal method for modification.The results indicate that when the hydrothermal reaction time is 24 h,Cu_(2)ZnSnS_(4)/TiO_(2)nanocomposite material exhibits excellent performance in coupling with the protected 304 SS,with its open circuit potential shifts negatively to-1.04 V.This material improves the separation efficiency of photogenerated electrons and effectively improves the photochemical cathodic protection of 304 stainless steel.The high removal rate of Staphylococcus aureus(up to 93%)of the as-prepared samples also proved that it has the effect of the anti-biological fouling.
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
文摘The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment.
基金supported by the National Science & Technology Infrastructure Development Program of China (No.2005DKA10400)
文摘A rectangle crevice assembly was used to study the effects of cathodic protection (CP) potential, crevice thickness, holiday size, bubbling CO2, and surface condition on the chemical and electrochemical environment of the local solution under disbonded coatings. It is found that the cathodic protection removes dissolved oxygen from the crevice and thus shifts the solution to a more al- kaline state. Furthermore, the potential of the steel reaches the protected potential range. The available protection distance increases with the negative applying potential. The steady potential and pH distribution are easily achieved, but the polarization degree is not satisfied within the thinner crevice. The difference in the solution environment is found to correlate to the holiday size. The smaller the holiday, the smaller the difference is. The presence of CO2 inhibits the formation of an alkaline environment. It is also found that the rust layer dramatically decreases the polarization rate in the crevice.
基金financially supported by the National Nature Science foundation of China (No.50301003 and 50461004)
文摘With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vo1% NaCI aqueous solution. The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosion potential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.
文摘Offshore platforms are always subjected to wave action which is random variable amplitude cyclic loading. In order to simulate the stressing condition at the 'hot spot' of the tubular joints and the marine environment, random variable amplitude fatigue tests have been carried out on welded plate joints in sea water. The tests have been conducted under the conditions of loading frequency of 0.2 Hz/, stress ratio of -1, seawater temperature of about 20°C and cathodic protection with the potential about -850 mV, SCE. The test results have been compared with the seawater corrosion fatigue life under constant amplitude loading. Miner's linear cumulative damage summation rule has been used to predict the corrosion fatigue life under variable amplitude loading. The predicted life is in good agreement with the test data.
文摘This paper presents the detail design conditions, design criteria and methods as well as design conclusions of the process, structure and corrosion of the production flowlines and high pressure water injection lines in BZ34-2 / 4 oil field in Bohai Bay. At present this design represents the design capability and level in the field of the submarine pipeline engineering of China.
基金Funded by Gansu Provincial Department of Transport Scientific Research Project(Nos.2017-16,2017-19)Science and Technology Program of Gansu Provincial Department of Housing and Construction(No.JK2021-11)+2 种基金Science and Technology Project of Gansu Provincial Department of Transportation(No.202102)Natural Science Foundation of Gansu Province(No.20JR10RA170)Gansu Provincial Department of Transportation 2021 the First Batch of the Unveiling of the Hanging System Projects。
文摘To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electromigration accelerated corrosion tests were used to evaluate the effectiveness of self-made zinc alloy anode with the help of relevant cathodic protection guidelines and evaluation criteria for the corrosion of reinforcement in concrete.The results showed that the protection was effective because the potential of the zinc alloy anode protection steel bar in the salt solution satis?ed the“-780 mV(SCE)”validity criterion.The self-corrosion potential(E_(corr))of the sacri?cial anode protection steel in concrete was greater than-276 mV,and the protective current density of the zinc alloy anode was 1-3μA·cm^(-2),which met the standards of EN12696-2000,further indicating that the self-made zinc alloy sacri?cial anode had a good protection combining with the polarization resistance and the appearance of the corroded surface of the steel in concrete.The microscopic morphology of the corroded surface and the composition of the corrosion products indicates that the mortar of the self-made zinc alloy anode has a lower pH than the imported anodes,so the long-term protection of the selfmade zinc alloy sacri?cial anode needs to be further improved.
文摘Pipeline is a key segment in the transportation of city gas and its safety affec ts the safety of industrial and domestic application. The characteristics of Shi Dongkou east gas steel pipeline buried in soil were discussed and its parameters related to safety were measured, including the state of anticorrosiv e layer, the soil resistivity, the natural potential and the protective potential of gas pipeline. The experimental result s were confirmed by excavating, which are of value to the knowledge of the gas pipeline buried in soil in Shanghai. The experimental data were analyzed which provide the scientific basis for the assurance of the gas pipeline safety and the reparation of anticorrosivelayer.