A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) sin...A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.展开更多
A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by t...A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input,and it calculates and outputs the bunch-by-bunch charge and position.In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes,it offers many additional features such as injection analysis,bunch response function reconstruction,and turn-by-turn beam analysis.The software package has an easy-to-understand graphical user interface and convenient interactive operation,which has been verified on the Windows 10 system.展开更多
The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadba...The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadband impedance spectrum measurement of solar cells,which was composed of an oscilloscope,a signal generator,and a sampling resistor.The results demonstrate concurrent accurate measurement of the impedance spectrum(50 Hz-0.1 MHz)and direct current voltametric characteristics.Comparative analysis with Keithley 2450 data yields a global relative error of approximately 6.70%,affirming the accuracy.Among excitation signals(sine,square,triangle,pulse waves),sine wave input yields the most accurate data,with a root mean square error of approximately 13.3016 and a global relative error of approximately 4.25%compared to theoretical data.Elevating reference resistance expands the half circle in the impedance spectrum.Proximity of reference resistance to that of the solar cell enhances the accuracy by mitigating line resistance influence.Measurement error is lower in high-frequency regions due to a higher signal-to-noise ratio.展开更多
文摘A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.
基金supported by the Ten Thousand Talent Program and National Natural Science Foundation of China(No.11575282)the Ten Thousand Talent Program and Chinese Academy of Sciences Key Technology Talent Program。
文摘A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input,and it calculates and outputs the bunch-by-bunch charge and position.In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes,it offers many additional features such as injection analysis,bunch response function reconstruction,and turn-by-turn beam analysis.The software package has an easy-to-understand graphical user interface and convenient interactive operation,which has been verified on the Windows 10 system.
基金supported by National Natural Science Foundation of China(Nos.12064027,62065014,12464010)2022 Jiangxi Province Highlevel and High-skilled Leading Talent Training Project Selected(No.63)+1 种基金Jiujiang“Xuncheng Talents”(No.JJXC2023032)Nanchang Hangkong University Education Reform Project(No.JY21069).
文摘The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadband impedance spectrum measurement of solar cells,which was composed of an oscilloscope,a signal generator,and a sampling resistor.The results demonstrate concurrent accurate measurement of the impedance spectrum(50 Hz-0.1 MHz)and direct current voltametric characteristics.Comparative analysis with Keithley 2450 data yields a global relative error of approximately 6.70%,affirming the accuracy.Among excitation signals(sine,square,triangle,pulse waves),sine wave input yields the most accurate data,with a root mean square error of approximately 13.3016 and a global relative error of approximately 4.25%compared to theoretical data.Elevating reference resistance expands the half circle in the impedance spectrum.Proximity of reference resistance to that of the solar cell enhances the accuracy by mitigating line resistance influence.Measurement error is lower in high-frequency regions due to a higher signal-to-noise ratio.