期刊文献+
共找到419篇文章
< 1 2 21 >
每页显示 20 50 100
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
1
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:2
2
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type Cathode materials Sodium-ion batteries Layered structure
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
3
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
4
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability Lithium-ion battery
下载PDF
Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
5
作者 Bin Ma Lisheng Zhang +5 位作者 Wentao Wang Hanqing Yu Xianbin Yang Siyan Chen Huizhi Wang Xinhua Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期877-889,共13页
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi... To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design. 展开更多
关键词 Cathode materials Material design Electrochemical performance prediction Deep learning Metal-ion batteries
下载PDF
Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
6
作者 Yuan Yuan Si Wu +2 位作者 Xiaoxue Song Jin Yong Lee Baotao Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期14-31,共18页
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay... Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs. 展开更多
关键词 layered cathode materials modifying strategies structure regulation zinc-ion batteries
下载PDF
Research progresses on cathode materials of aqueous zinc-ion batteries
7
作者 Zengyuan Fan Jiawei Wang +3 位作者 Yunpeng Wu Xuedong Yan Dongmei Dai Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期237-264,I0005,共29页
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold ... Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs)have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn~(2+),in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Cathode materials Optimization strategies
下载PDF
Two-Dimensional Graphitic Carbon-Nitride(g-C_(3)N_(4))-Coated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) Cathodes for High-Energy-Density and Long-Life Lithium Batteries
8
作者 Zhenliang Duan Pengbo Zhai +1 位作者 Ning Zhao Xiangxin Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期140-149,共10页
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface... High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C. 展开更多
关键词 cathode materials g-C_(3)N_(4) coating LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) lithium batteries PVDF:LLZTO electrolyte membranes
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
9
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary Cathode materials Electrochemical Performance
下载PDF
Influences of transition metal on structural and electrochemical properties of Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8) cathode materials for lithium-ion batteries 被引量:5
10
作者 潘成迟 朱裔荣 +5 位作者 杨应昌 侯红帅 景明俊 宋维鑫 杨旭明 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1396-1402,共7页
Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ... Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles. 展开更多
关键词 Li[NixCoyMnz]O2 electrochemical performance cathode material lithium-ion battery
下载PDF
Grinding sol gel synthesis and electrochemical performance of mesoporous Li_3V_2(PO_4)_3 cathode materials 被引量:3
11
作者 刘国聪 刘又年 刘素琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期439-444,共6页
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint... Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature. 展开更多
关键词 Li3Vz(PO4)3 cathode material mesoporous structure grinding-sol-gel method electrochemical performance
下载PDF
Synthesis and Performance of LiMnO_2 as Cathodes for Li-ion Batteries 被引量:1
12
作者 赵世玺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第3期5-8,共4页
Two structure types of LiMnO 2 were synthesized by sol gel method and ion exchange method respectively.The results indicate that orthorhombic phase LiMnO 2 is more stable than layered LiMnO 2,o LiMnO 2 can be s... Two structure types of LiMnO 2 were synthesized by sol gel method and ion exchange method respectively.The results indicate that orthorhombic phase LiMnO 2 is more stable than layered LiMnO 2,o LiMnO 2 can be synthesized directly by sol gel methods followed by heat treated in argon,but layered LiMnO 2 was obtained only by indirect methods such as ion exchange method.In this paper,we first synthesized layered NaMnO 2 by the sol gel method,and then obtained layered LiMnO 2 by the ion exchange method.The phase constitution,chemical composition,and images of the products were tested by XRD,AAS (atomic absorption spectroscopy) and SEM.The electrochemical performances of the two structural types of LiMnO 2 are obviously different during the initial few cycles,but later they both have a good capacity retaining ability.The capacity of layered structure LiMnO 2 is higher than that of o LiMnO 2. 展开更多
关键词 orthorhombic LiMnO 2 layered LiMnO 2 SYNTHESIS cathodes materials Li ion batteries
下载PDF
Synthesis and electrochemical properties of LiNi_(0.87)Co_(0.10)Mg_(0.03)O_2 cathode materials
13
作者 邓龙征 吴锋 +2 位作者 高旭光 刘震天 谢海明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期527-532,共6页
A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge ca... A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge capacities of 202.6 mA.h/g and 190.5 mA.h/g at 0.2C and 1C rate, respectively, in operating voltage range of 3.0-4.3 V (versus Li^+/Li). The capacity retentions are 96.1% and 93.4% at 0.2C and 1C, respectively, after 50 cycles. Moreover, the cycle performance of the sample was investigated in a 053048-type square Li ion battery. This type of battery can keep 81.7% of initial capacity after 500 charge-discharge cycles at 1C rate, which is close to that of commercial LiCoO2 battery. Therefore, the as-prepared material is capable of such high energy applications as portable product power. 展开更多
关键词 lithium-ion batteries cathode material co-precipitation method cobalt-magnesium co-substitution ELECTROCHEMICALPROPERTIES
下载PDF
Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials:A comparison study 被引量:26
14
作者 Zhenpo Wang Jing Yuan +4 位作者 Xiaoqing Zhu Hsin Wang Lvwei Huang Yituo Wang Shiqi Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期484-498,共15页
In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_... In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_(2)(NCM622)and Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM811))were investigated.The results showed that,under the same overcharge condition,the TR of LFP Li-ion cell occurred earlier compared with the NCM Li-ion cells,indicating its poor overcharge tolerance and high TR risk.However,when TR occurred,LFP Li-ion cell exhibited lower maximum temperature and mild TR response.All NCM Liion cells caught fire or exploded during TR,while the LFP Li-ion cell only released a large amount of smoke without fire.According to the overcharge behaviors and TR features,a safety assessment score system was proposed to evaluate the safety of the cells.In short,NCM Li-ion cells have better performance in energy density and overcharge tolerance(or low TR risk),while LFP Li-ion cell showed less severe response to overcharging(or less TR hazards).For NCM Li-ion cells,as the ratio of nickel in cathode material increases,the thermal stability of the cathode materials becomes poorer,and the TR hazards increase.Such a comparison study on large format Li-ion cells with different cathode materials can provide deeper insights into the overcharge behaviors and TR features,and provide guidance for engineers to reasonably choose battery materials in automotive applications. 展开更多
关键词 Lithium-ion battery Cathode materials OVERCHARGE Thermal runaway Overcharge tolerance Safety assessment
下载PDF
Microwave synthesis of Li_2FeSiO_4 cathode materials for lithium-ion batteries 被引量:20
15
作者 Zhong Dong Peng Yan Bing Cao Guo Rong Hu Ke Du Xu Guang Gao Zheng Wei Xiao 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第8期1000-1004,共5页
A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-typ... A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 rain. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solidstate reaction. ?2009 Yan Bing Cao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 Li-ion battery Cathode material Microwave synthesis LI2FESIO4
下载PDF
Preparation and electrochemical properties of Y-doped Li_3V_2(PO_4)_3 cathode materials for lithium batteries 被引量:11
16
作者 钟胜奎 刘乐通 +4 位作者 姜吉琼 李延伟 王健 刘洁群 李艳红 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期134-137,共4页
Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measuremen... Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure. 展开更多
关键词 lithium ion batteries cathode material Li3V2(PO4)3 Y-doping carbothemml reduction method cyclic voltammogram (CV) rare earths
下载PDF
Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries 被引量:11
17
作者 Shi-jie LU Yang LIU +4 位作者 Zhen-jiang HE Yun-jiao LI Jun-chao ZHENG Jing MAO Ke-hua DAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1074-1086,共13页
Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigat... Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase. 展开更多
关键词 lithium-ion battery cathode material SINGLE-CRYSTAL electrochemical performance phase transformation
下载PDF
Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries 被引量:13
18
作者 Ying Liu Xiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期223-237,共15页
In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic an... In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect. 展开更多
关键词 Aqueous zinc ion batteries Vanadium-base compounds Cathode materials Energy storage mechanism
下载PDF
The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries 被引量:10
19
作者 Daozhong Hu Yuefeng Su +7 位作者 Lai Chen Ning Li Liying Bao Yun Lu Qiyu Zhang Jing Wang Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期1-8,共8页
Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indi... Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indispensable to understand the capacity failure mechanism of Ni-rich cathode materials and further address this issue.This work demonstrates the domain size effects on interfacial side reactions firstly,and further analyzes the inherent mechanism of side reaction induced capacity decay through comparing the interfacial behaviors before and after MgO coating.It has been determined that LiF deposition caused thicker SEI films may not increase the surface film resistance,while HF erosion induced surface phase transition will increase the charge transfer resistance,and the later plays the dominant factor to declined capacity of Ni-rich cathode materials.This work suggests strategies to suppress the capacity decay of layered cathode materials and provides a guidance for the domain size control to match the various applications under different current rates. 展开更多
关键词 Lithium-ion batteries Ni-rich cathode materials LiF deposition HF erosion Failure mechanism
下载PDF
Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries 被引量:10
20
作者 Feng Wu Sheng Xian Wu +2 位作者 Ren Jie Chen Shi Chen Guo Qing Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第10期1255-1258,共4页
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composit... The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity. 展开更多
关键词 Sulfur composite Cathode materials Activated carbon Electrochemical performance
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部