Monodisperse poly (chloromethylstyrene divinylbenzene) particles were prepared by a two-step swelling method. It was demonstrated that the packings have comparative advantages for biopolymer separation with high colum...Monodisperse poly (chloromethylstyrene divinylbenzene) particles were prepared by a two-step swelling method. It was demonstrated that the packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low back pressure to the packings prepared with suspension polymerization method. Using size exclusionchromatography and weak ion exchange chromatography as examples, it was shown that these packings could be modified chemically more easily than poly (styrene divinylbenzene) packings.展开更多
Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesi...Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC) retention mechanism. The measured bioactivity recovery for lysozyme was (96 ± 5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively.展开更多
The monodisperse poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads with macroporous in the range of 8.0—12.0 m were prepared by a single-step swelling and polymerization method. The seed particles prepared...The monodisperse poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads with macroporous in the range of 8.0—12.0 m were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. The pore size distribution of the beads was evaluated by gel permeation chromatography and mercury intrusion method. By using this media, a weak cation exchange (WCX) stationary phase for HPLC was synthesized by a new chemical modification method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery and good resolution for proteins. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized WCX packings was 21.3 mg/g. Five proteins were completely separated in 8.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 8 min with only one step . The purity and specific bioactivity of the purified lysozyme was found more than 92.0% and 70184 U/mg, respectively.展开更多
文摘Monodisperse poly (chloromethylstyrene divinylbenzene) particles were prepared by a two-step swelling method. It was demonstrated that the packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low back pressure to the packings prepared with suspension polymerization method. Using size exclusionchromatography and weak ion exchange chromatography as examples, it was shown that these packings could be modified chemically more easily than poly (styrene divinylbenzene) packings.
基金Project supported by the National Natural Science Foundation of China (Nos. 39880003, 20175016).
文摘Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC) retention mechanism. The measured bioactivity recovery for lysozyme was (96 ± 5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively.
基金Project supported by the National Natural Science Foundation of China (Nos. 39880003 and 20175016 ).
文摘The monodisperse poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads with macroporous in the range of 8.0—12.0 m were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. The pore size distribution of the beads was evaluated by gel permeation chromatography and mercury intrusion method. By using this media, a weak cation exchange (WCX) stationary phase for HPLC was synthesized by a new chemical modification method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery and good resolution for proteins. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized WCX packings was 21.3 mg/g. Five proteins were completely separated in 8.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 8 min with only one step . The purity and specific bioactivity of the purified lysozyme was found more than 92.0% and 70184 U/mg, respectively.