Dentine hypersensitivity is an annoying worldwide disease,yet its mechanism remains unclear.The long-used hydrodynamic theory,a stimuli-induced fluid-flow process,describes the pain processes.However,no experimental e...Dentine hypersensitivity is an annoying worldwide disease,yet its mechanism remains unclear.The long-used hydrodynamic theory,a stimuli-induced fluid-flow process,describes the pain processes.However,no experimental evidence supports the statements.Here,we demonstrate that stimuli-induced directional cation transport,rather than fluid-flow,through dentinal tubules actually leads to dentine hypersensitivity.The in vitro/in vivo electro-chemical and electro-neurophysiological approaches reveal the cation current through the nanoconfined negatively charged dentinal tubules coming from external stimuli(pressure,pH,and temperature)on dentin surface and further triggering the nerve impulses causing the dentine hypersensitivity.Furthermore,the cationic-hydrogels blocked dentinal tubules could significantly reduce the stimuli-triggered nerve action potentials and the anionhydrogels counterpart enhances those,supporting the cation-flow transducing dentine hypersensitivity.Therefore,the inspired ion-blocking desensitizing therapies have achieved remarkable pain relief in clinical applications.The proposed mechanism would enrich the basic knowledge of dentistry and further foster breakthrough initiatives in hypersensitivity mitigation and cure.展开更多
Body is equipped with organic cation transporters(OCTs).These OCTs mediate drug transport and are also involved in some disease process.We aimed to investigate whether liver failure alters intestinal,hepatic and renal...Body is equipped with organic cation transporters(OCTs).These OCTs mediate drug transport and are also involved in some disease process.We aimed to investigate whether liver failure alters intestinal,hepatic and renal Oct expressions using bile duct ligation(BDL)rats.Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure,associated with decreased intestinal absorption and increased urinary excretion.Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2.In vitro cell experiments show that chenodeoxycholic acid(CDCA),bilirubin and farnesoid X receptor(FXR)agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1,which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR.Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL,which are confirmed using CDCA-treated and bilirubin-treated rats.A disease-based physiologically based pharmacokinetic model characterizing intestinal,hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats.In conclusion,BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats,finally,decreasing plasma exposure and impairing hypoglycemic effects of metformin.BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.展开更多
Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells....Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells. Both anisodine and monocrotaline inhibited the OCTs and MATE transporters. The lowest IC50 was 12.9 μmol·L-1 of anisodine on OCT1 and the highest was 1.8 mmol·L-1 of monocrotaline on OCT2. Anisodine was a substrate of OCT2(Km = 13.3 ± 2.6 μmol·L-1 and Vmax = 286.8 ± 53.6 pmol/mg protein/min). Monocrotaline was determined to be a substrate of both OCT1(Km = 109.1 ± 17.8 μmol·L^-1, Vmax = 576.5 ± 87.5 pmol/mg protein/min) and OCT2(Km = 64.7 ± 14.8 μmol·L^-1, Vmax = 180.7 ± 22.0 pmol/mg protein/min), other than OCT3 and MATE transporters. The results indicated that OCT2 may be important for renal elimination of anisodine and OCT1 was responsible for monocrotaline uptake into liver. However neither MATE1 nor MATE2-K could facilitate transcellular transport of anisodine and monocrotaline. Accumulation of these drugs in the organs with high OCT1 expression(liver) and OCT2 expression(kidney) may be expected.展开更多
AIM: To study the effect of copper transporting P-type ATPase in copper metabolism of hepatocyte and pathogenesis of Wilson disease (WD). METHODS: WD copper transporting properties in some organelles of the cultured h...AIM: To study the effect of copper transporting P-type ATPase in copper metabolism of hepatocyte and pathogenesis of Wilson disease (WD). METHODS: WD copper transporting properties in some organelles of the cultured hepatocytes were studied from WD patients and normal controls.These cultured hepatocytes were incubated in the media of copper 15 mg x L(-1) only, copper 15 mg x L(-1) with vincristine (agonist of P-type ATPase) 0.5mg x L(-1), or copper 15 mg x L(-1) with vanadate (antagonist of P-type ATPase) 18.39 mg x L(-1) separately. Microsome (endoplasmic reticulum and Golgi apparatus), lysosome, mitochondria, and cytosol were isolated by differential centrifugation. Copper contents in these organelles were measured with atomic absorption spectrophotometer, and the influence in copper transportion of these organelles by vanadate and vincristine were comparatively analyzed between WD patients and controls. WD copper transporting P-type ATPase was detected by SDS-PAGE in conjunction with Western blot in liver samples of WD patients and controls. RESULTS: The specific WD proteins (M(r)155,000 lanes) were expressed in human hepatocytes, including the control and WD patients. After incubation with medium containing copper for 2 h or 24 h, the microsome copper concentration in WD patients was obviously lower than that of controls, and the addition of vanadate or vincristine would change the copper transporting of microsomes obviously. When incubated with vincristine, levels of copper in microsome were significantly increased, while incubated with vanadate, the copper concentrations in microsome were obviously decreased. The results indicated that there were WD proteins, the copper transportion P-type ATPase in the microsome of hepatocytes. WD patients possessed abnormal copper transporting function of WD protein in the microsome, and the agonist might correct the defect of copper transportion by promoting the activity of copper transportion P-type ATPase. CONCLUSION: Copper transportion P-type ATPase plays an important role in hepatocytic copper metabolism. Dysfunction of hepatocytic WD protein copper transportion might be one of the most important factors for WD.展开更多
MOLECULAR PHYSIOLLGY OF HEPATOCELLULAR TRANSPORT PROTEINS Basolaferal transport systems Na+-dependent bile salt uptake Uptake of bile salts into the liver was first isolated perfused rat liver[1],isolated hepatocyte...MOLECULAR PHYSIOLLGY OF HEPATOCELLULAR TRANSPORT PROTEINS Basolaferal transport systems Na+-dependent bile salt uptake Uptake of bile salts into the liver was first isolated perfused rat liver[1],isolated hepatocyte cultures and basolateral plasma membrane vesicles [2,4].展开更多
Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for...Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.展开更多
AIM: To evaluate the inhibitory effects of apigenin and kaempferol on the uptake of several important solute carrier (SLC) transporters.METHODS: Various SLC transporters including the essential human organic anion...AIM: To evaluate the inhibitory effects of apigenin and kaempferol on the uptake of several important solute carrier (SLC) transporters.METHODS: Various SLC transporters including the essential human organic anion transporter 1 (OAT1), OAT2, OAT3 and OAT4 as well as the important organic cation transporter 1 (OCTN1) and OCTN2, were over-expressed in human embryonic kidney (HEK)-293 cells, a well-established cell model of transporter studies. Transport uptake assay was performed 24 h after the transfection. The transport activity was assessed with the uptake of previously determined transporter model substrates and the inhibitory effect of apigenin and kaempferol was evaluated with the substrate uptake in the presence of 10 μmol/L of each compound. Uptake measurements with varying concentrations of inhibitors (ranged from 0.0001 to 50 μmol/L) were performed to further characterize the inhibitory potency of apigenin and kaempferol. The IC50 value (the concentration that inhibits 50% of the transporter function) of each com-pound was then calculated by the nonlinear regression model of Graphpad Prism 6.0 software.RESULTS: Our data indicated that apigenin could potently inhibit the uptake of estrone-3-sulfate (ES) mediated by the HEK-293 cells expressing OAT2, OAT3 and OAT4 as well as the L-ergothioneine uptake via OCTN1-expressing HEK-293 cells. Among these trans-porters, the most prominent inhibition of apigenin was observed in the case of OAT3. Kaempferol showed sig-nifcant inhibitory effects on the uptake of ES mediated through OAT2 and OAT3. Impaired L-ergothioneine uptake due to the presence of kaempferol was also ob-served in OCTN1-expressing HEK-293 cells. Similar to apigenin, kaempferol showed the most potent inhibito-ry effect on OAT3 as well. To further assess the inhibi-tory potencies of these two compounds on the uptake of ES mediated by OAT3-expressing HEK-293 cells, their IC50 values were then determined. Both chemicals showed pronounced inhibitory potencies on OAT3 with the IC50 values of 1.7 ± 0.1 and 1.0 ± 0.1 μmol/L (P 〈 0.01) for apigenin and kaempferol, respectively.CONCLUSION: Both apigenin and kaempferol are po-tent inhibitors of OAT3; precautions will be necessary when co-administrating them with drugs that are sub-strates of OAT3.展开更多
Hydrologic process,turbidity,suspended particles matters(SPM),major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmuguan undergr...Hydrologic process,turbidity,suspended particles matters(SPM),major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmuguan underground river system.Scanning electron microscopy(SEM) and energy disperse spectroscopy(EDS) analyses of SPM were展开更多
The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ) from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ) and Pb(Ⅱ),was studied.The...The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ) from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ) and Pb(Ⅱ),was studied.The source phases contained equimolar concentrations of the above-mentioned cations,with the source and receiving phases being buffered at pH 5.0 and 3.0,respectively. Ag(Ⅰ) ion transport occurred with a good efficiency from the aqueous source phases across the bulk liquid membrane and polymer membrane(derived from cellulose triacetate) containing ligand 1 as the ionophores,into the aqueous receiving phases.Clear transport selectivity for Ag(Ⅰ) was observed using ligand 1.There was no selectivity for the cations using ligand 2 in the both bulk liquid membrane and polymer membrane transports.展开更多
Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles we...Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F1, IEC=0), propylsulfonic acid(F2, IEC= 2.71), and sulfonic acid(F3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g^-1 was obtained for the membrane having 3 wt% F3 nanoparticles and the maximum conductivity of 0.237 S·cm^-1 was achieved for the membrane having 2 wt% F3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.展开更多
Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protoco...Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protocol framework, and proposes a new design of a Differentiation Enhanced Adaptive EDCA (enhanced distribution channel access) approach. The proposed approach adjusts the window zooming dynamically according to the collision rate in sending data frames, makes random offset, and further distinguishes the competition parameters of the data frames that have the same priority, so as to reduce the conflict among the data frames, and improve the channel utilization. Experiments with different service cases were conducted. The simulation results show that: comparing with the conventional EDCA method, the proposed approach can ensure that high priority services are sent with priority, and the overall QoS is highly improved.展开更多
基金We thank the National Key R&D Program of China(No.2020YFA0710401)the National Natural Science Foundation of China(Nos.82225012,81922019,82071161,81991505,22122207,21988102,and 52075138)+1 种基金the Young Elite Scientist Sponsorship Program by CAST(No.2020QNRC001)the Beijing Nova Program(No.211100002121013).
文摘Dentine hypersensitivity is an annoying worldwide disease,yet its mechanism remains unclear.The long-used hydrodynamic theory,a stimuli-induced fluid-flow process,describes the pain processes.However,no experimental evidence supports the statements.Here,we demonstrate that stimuli-induced directional cation transport,rather than fluid-flow,through dentinal tubules actually leads to dentine hypersensitivity.The in vitro/in vivo electro-chemical and electro-neurophysiological approaches reveal the cation current through the nanoconfined negatively charged dentinal tubules coming from external stimuli(pressure,pH,and temperature)on dentin surface and further triggering the nerve impulses causing the dentine hypersensitivity.Furthermore,the cationic-hydrogels blocked dentinal tubules could significantly reduce the stimuli-triggered nerve action potentials and the anionhydrogels counterpart enhances those,supporting the cation-flow transducing dentine hypersensitivity.Therefore,the inspired ion-blocking desensitizing therapies have achieved remarkable pain relief in clinical applications.The proposed mechanism would enrich the basic knowledge of dentistry and further foster breakthrough initiatives in hypersensitivity mitigation and cure.
基金supported by the National Natural Science Foundation of China(Nos.82173884,81872930,82073922 and 81872833)the“Double First-Class”university project(No.CPU2018GY22,China)。
文摘Body is equipped with organic cation transporters(OCTs).These OCTs mediate drug transport and are also involved in some disease process.We aimed to investigate whether liver failure alters intestinal,hepatic and renal Oct expressions using bile duct ligation(BDL)rats.Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure,associated with decreased intestinal absorption and increased urinary excretion.Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2.In vitro cell experiments show that chenodeoxycholic acid(CDCA),bilirubin and farnesoid X receptor(FXR)agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1,which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR.Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL,which are confirmed using CDCA-treated and bilirubin-treated rats.A disease-based physiologically based pharmacokinetic model characterizing intestinal,hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats.In conclusion,BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats,finally,decreasing plasma exposure and impairing hypoglycemic effects of metformin.BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.
基金supported by the Natural Science Foundation of Guangdong Province(No.2018A0303100026)German Research Foundation(DFG) Grant Clinical Research Group “Genotype-phenotype relationships and neurobiology of the longitudinal course of psychosis” in work package 3(No. BR2471/1-1) and DFG Grant(No. TZ74/1-1)
文摘Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells. Both anisodine and monocrotaline inhibited the OCTs and MATE transporters. The lowest IC50 was 12.9 μmol·L-1 of anisodine on OCT1 and the highest was 1.8 mmol·L-1 of monocrotaline on OCT2. Anisodine was a substrate of OCT2(Km = 13.3 ± 2.6 μmol·L-1 and Vmax = 286.8 ± 53.6 pmol/mg protein/min). Monocrotaline was determined to be a substrate of both OCT1(Km = 109.1 ± 17.8 μmol·L^-1, Vmax = 576.5 ± 87.5 pmol/mg protein/min) and OCT2(Km = 64.7 ± 14.8 μmol·L^-1, Vmax = 180.7 ± 22.0 pmol/mg protein/min), other than OCT3 and MATE transporters. The results indicated that OCT2 may be important for renal elimination of anisodine and OCT1 was responsible for monocrotaline uptake into liver. However neither MATE1 nor MATE2-K could facilitate transcellular transport of anisodine and monocrotaline. Accumulation of these drugs in the organs with high OCT1 expression(liver) and OCT2 expression(kidney) may be expected.
基金Supported by Key Clinical Program of Ministry of Ministry of Health(No.37091)"211 Project"of SUMS sponsored by Ministry of Health and Guangdong Provincial Natural Science Foundation,No.990064
文摘AIM: To study the effect of copper transporting P-type ATPase in copper metabolism of hepatocyte and pathogenesis of Wilson disease (WD). METHODS: WD copper transporting properties in some organelles of the cultured hepatocytes were studied from WD patients and normal controls.These cultured hepatocytes were incubated in the media of copper 15 mg x L(-1) only, copper 15 mg x L(-1) with vincristine (agonist of P-type ATPase) 0.5mg x L(-1), or copper 15 mg x L(-1) with vanadate (antagonist of P-type ATPase) 18.39 mg x L(-1) separately. Microsome (endoplasmic reticulum and Golgi apparatus), lysosome, mitochondria, and cytosol were isolated by differential centrifugation. Copper contents in these organelles were measured with atomic absorption spectrophotometer, and the influence in copper transportion of these organelles by vanadate and vincristine were comparatively analyzed between WD patients and controls. WD copper transporting P-type ATPase was detected by SDS-PAGE in conjunction with Western blot in liver samples of WD patients and controls. RESULTS: The specific WD proteins (M(r)155,000 lanes) were expressed in human hepatocytes, including the control and WD patients. After incubation with medium containing copper for 2 h or 24 h, the microsome copper concentration in WD patients was obviously lower than that of controls, and the addition of vanadate or vincristine would change the copper transporting of microsomes obviously. When incubated with vincristine, levels of copper in microsome were significantly increased, while incubated with vanadate, the copper concentrations in microsome were obviously decreased. The results indicated that there were WD proteins, the copper transportion P-type ATPase in the microsome of hepatocytes. WD patients possessed abnormal copper transporting function of WD protein in the microsome, and the agonist might correct the defect of copper transportion by promoting the activity of copper transportion P-type ATPase. CONCLUSION: Copper transportion P-type ATPase plays an important role in hepatocytic copper metabolism. Dysfunction of hepatocytic WD protein copper transportion might be one of the most important factors for WD.
基金supported by"H+Die Spitaler der Schweiz" the Swiss Agency for Development and Cooperation(DEZA)by the University Hospital Zurich/Switzerland
文摘MOLECULAR PHYSIOLLGY OF HEPATOCELLULAR TRANSPORT PROTEINS Basolaferal transport systems Na+-dependent bile salt uptake Uptake of bile salts into the liver was first isolated perfused rat liver[1],isolated hepatocyte cultures and basolateral plasma membrane vesicles [2,4].
基金supported by the NSFC/RGC Joint Research Scheme 2020/21(Project No:N_City U104/20)。
文摘Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.
基金Supported by Internal funding from Faculty of Pharmacy,the University of Sydney,Australia
文摘AIM: To evaluate the inhibitory effects of apigenin and kaempferol on the uptake of several important solute carrier (SLC) transporters.METHODS: Various SLC transporters including the essential human organic anion transporter 1 (OAT1), OAT2, OAT3 and OAT4 as well as the important organic cation transporter 1 (OCTN1) and OCTN2, were over-expressed in human embryonic kidney (HEK)-293 cells, a well-established cell model of transporter studies. Transport uptake assay was performed 24 h after the transfection. The transport activity was assessed with the uptake of previously determined transporter model substrates and the inhibitory effect of apigenin and kaempferol was evaluated with the substrate uptake in the presence of 10 μmol/L of each compound. Uptake measurements with varying concentrations of inhibitors (ranged from 0.0001 to 50 μmol/L) were performed to further characterize the inhibitory potency of apigenin and kaempferol. The IC50 value (the concentration that inhibits 50% of the transporter function) of each com-pound was then calculated by the nonlinear regression model of Graphpad Prism 6.0 software.RESULTS: Our data indicated that apigenin could potently inhibit the uptake of estrone-3-sulfate (ES) mediated by the HEK-293 cells expressing OAT2, OAT3 and OAT4 as well as the L-ergothioneine uptake via OCTN1-expressing HEK-293 cells. Among these trans-porters, the most prominent inhibition of apigenin was observed in the case of OAT3. Kaempferol showed sig-nifcant inhibitory effects on the uptake of ES mediated through OAT2 and OAT3. Impaired L-ergothioneine uptake due to the presence of kaempferol was also ob-served in OCTN1-expressing HEK-293 cells. Similar to apigenin, kaempferol showed the most potent inhibito-ry effect on OAT3 as well. To further assess the inhibi-tory potencies of these two compounds on the uptake of ES mediated by OAT3-expressing HEK-293 cells, their IC50 values were then determined. Both chemicals showed pronounced inhibitory potencies on OAT3 with the IC50 values of 1.7 ± 0.1 and 1.0 ± 0.1 μmol/L (P 〈 0.01) for apigenin and kaempferol, respectively.CONCLUSION: Both apigenin and kaempferol are po-tent inhibitors of OAT3; precautions will be necessary when co-administrating them with drugs that are sub-strates of OAT3.
文摘Hydrologic process,turbidity,suspended particles matters(SPM),major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmuguan underground river system.Scanning electron microscopy(SEM) and energy disperse spectroscopy(EDS) analyses of SPM were
文摘The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ) from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ) and Pb(Ⅱ),was studied.The source phases contained equimolar concentrations of the above-mentioned cations,with the source and receiving phases being buffered at pH 5.0 and 3.0,respectively. Ag(Ⅰ) ion transport occurred with a good efficiency from the aqueous source phases across the bulk liquid membrane and polymer membrane(derived from cellulose triacetate) containing ligand 1 as the ionophores,into the aqueous receiving phases.Clear transport selectivity for Ag(Ⅰ) was observed using ligand 1.There was no selectivity for the cations using ligand 2 in the both bulk liquid membrane and polymer membrane transports.
文摘Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F1, IEC=0), propylsulfonic acid(F2, IEC= 2.71), and sulfonic acid(F3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g^-1 was obtained for the membrane having 3 wt% F3 nanoparticles and the maximum conductivity of 0.237 S·cm^-1 was achieved for the membrane having 2 wt% F3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.
文摘Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protocol framework, and proposes a new design of a Differentiation Enhanced Adaptive EDCA (enhanced distribution channel access) approach. The proposed approach adjusts the window zooming dynamically according to the collision rate in sending data frames, makes random offset, and further distinguishes the competition parameters of the data frames that have the same priority, so as to reduce the conflict among the data frames, and improve the channel utilization. Experiments with different service cases were conducted. The simulation results show that: comparing with the conventional EDCA method, the proposed approach can ensure that high priority services are sent with priority, and the overall QoS is highly improved.