A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human...A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced ro 0.027 eu/mL. Recovery of HSA was over 95%.展开更多
The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal the...The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal theories of high-T<sub>c</sub> superconductors, thereby applying the finding that the optimum hole concentration of σ<sub>o</sub> = 0.229 can be linked with the universal fractal constant δ<sub>1</sub> = 8.72109… of the renormalized quadratic Hénon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. However, also conventional BCS superconductors can be scaled with δ<sub>1</sub>, exemplified through the energy gap relation k<sub>B</sub>T<sub>c</sub> ≈ 5Δ<sub>0</sub>/δ<sub>1</sub>, suggesting a revision of the entire theory of superconductivity. A low mean cationic charge allows the development of a frustrated nano-sized fractal structure of possibly ferroelastic nature delivering nano-channels for very fast charge transport, in common for both high-T<sub>c</sub> superconductor and organic-inorganic halide perovskite solar materials. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of “bulk” CuO1﹣x samples. In addition, cesium substitution in the Tl-1223 compound is an option.展开更多
Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is...Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water.This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils(CS-MSs). Results showed that the dissolved organic carbon(DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and0.293 meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7 mg/L, respectively.The excitation–emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044 meq/g was used, DOC was increased from 3.4 to 3.9 mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures(e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation.展开更多
文摘A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced ro 0.027 eu/mL. Recovery of HSA was over 95%.
文摘The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal theories of high-T<sub>c</sub> superconductors, thereby applying the finding that the optimum hole concentration of σ<sub>o</sub> = 0.229 can be linked with the universal fractal constant δ<sub>1</sub> = 8.72109… of the renormalized quadratic Hénon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. However, also conventional BCS superconductors can be scaled with δ<sub>1</sub>, exemplified through the energy gap relation k<sub>B</sub>T<sub>c</sub> ≈ 5Δ<sub>0</sub>/δ<sub>1</sub>, suggesting a revision of the entire theory of superconductivity. A low mean cationic charge allows the development of a frustrated nano-sized fractal structure of possibly ferroelastic nature delivering nano-channels for very fast charge transport, in common for both high-T<sub>c</sub> superconductor and organic-inorganic halide perovskite solar materials. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of “bulk” CuO1﹣x samples. In addition, cesium substitution in the Tl-1223 compound is an option.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030203)the Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. YSW2013B05)
文摘Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water.This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils(CS-MSs). Results showed that the dissolved organic carbon(DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and0.293 meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7 mg/L, respectively.The excitation–emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044 meq/g was used, DOC was increased from 3.4 to 3.9 mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures(e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation.