In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGD...In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGDE was in particulate form with rough surface morphology and a diameter ranging from 10 to 30μm.The adsorption performance of the TA-EGDE was evaluated in a flow-through mode using water samples contaminated with methylene blue(MB)and two-component mixed dyes,respectively.The TA-EGDE provided adsorption capacity up to 721.8 mg·g^(-1)at 65°C for MB.It showed a high removal efficiency(99%)of MB(50 mg·L^(-1))from the water sample and could recovery 90%of the adsorbed MB by eluting with acidic ethanol aqueous solution.The excellent adsorption of MB and neutral red on the TA-EGDE may be the result of the synergy of electrostatic interaction andπ-πinteraction.Furthermore,the TA-EGDE could separate dyes from water samples contaminated with twocomponent mixed dyes with a separation coefficient ranging from 1.8 to 36.5.The anionic TA-EGDE would be an effective adsorbent to remove and recycle dyes from the contaminated water.展开更多
In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) ...In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.展开更多
In order to remove the organic dyes of textile waste water,the silica aerogel was successfully prepared by using E-40 as a novel precursor and then dried in ambient pressure.The synthesized sample was verified by Scan...In order to remove the organic dyes of textile waste water,the silica aerogel was successfully prepared by using E-40 as a novel precursor and then dried in ambient pressure.The synthesized sample was verified by Scanning Electron Microscopy(SEM)and Fourier Transform Infrared Spectroscopy(FTIR).After calcining,the hydrophilic silica aerogel(HSA)was used as adsorbent to remove Methylene Blue(MB),Malachite Green(MG),and Gentian Violet(GV)from aqueous solution.The effects of initial concentration of dyes and adsorbent dosage on the adsorption process were examined.It was found that HSA showed excellent adsorption capacities,the maximum percentage of removal dyes could reach 98%.Herein,the Langmuir,Freundlich and de Boer-Zwikker isotherm modes were employed to discuss the adsorption behavior.The results indicated that the de Boer–Zwikker model can effectively describe the adsorption behavior.Besides,the HSA could be utilized as the recyclable adsorbent in degradation experiment,after five cycles,no obvious loss of adsorption capacity was found.As an efficient,low-cost,environmental friendly and recyclable adsorbent,silica aerogel is expected to be used for dyes removal.展开更多
Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green a...Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green and convenient strategy for the fabrication of porous material via aqueous foam templates,which was synergistically stabilized by Codonopsis pilosula(CP)and clay minerals of attapulgite(APT).The characterization results revealed that the APT was modified by organic molecules leached from CP and anchored at the air-water interface,which improved the foam stability significantly.The novel porous material of polyacrylamide/Codonopsis pilosula/attapulgite(PAM/CP/APT)templated from the aqueous foam via a polymerization reaction had excellent adsorption capacity for the cationic dyes methyl violet(MV)and methylene blue(MB),and the adsorption capacity can reach 755.85 mg/g and557.64 mg/g,respectively.More importantly,the adsorption capacity of spent adsorbent material was still over 200 mg/g after being recycled five times through a simple carbonization process,and then it was added to the plant pot,the total biomass was increased by about86.42%.This study provided a green and sustainable pathway for the preparation,application and subsequent processing of porous materials.展开更多
The kinetics of hydrolysis of cationic reactive disperse dyes containing quaternary group and chemical shift(13CNMR) of the adjacent carbon atoms with pyridine-acetylamino were discussed. The results show pyridine-a...The kinetics of hydrolysis of cationic reactive disperse dyes containing quaternary group and chemical shift(13CNMR) of the adjacent carbon atoms with pyridine-acetylamino were discussed. The results show pyridine-acetylamino reactive group had higher reactivity than chloroacetylamino and chemical shift(13 CNMR) of the adjacent carbon atoms with pyridine-acetylamino moved 18.77 ppm.展开更多
TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups...TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.展开更多
Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride ...Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.展开更多
Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can ...Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-bylayber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex fihns is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.展开更多
The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron micros...The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron microscopy (SEM). It comes to the conclusions that the larger the crystallite size in the fibers is , the better the dyeable properties of the fibers are and there is a little compatibility between the dyeable agent and polypropylene resin. And the dye-uptake of the fibers may be up to 90% because the dyeable agent can uniformly be scattered in polypropylene.展开更多
Polymers of intrinsic microporosity shows great potential for dye adsorption and magnetic Fe_(3)O_(4) are easy to be separated.In this work,hydrolyzed polymers of intrinsic microporosity-1/Fe_(3)O_(4) composite adsorb...Polymers of intrinsic microporosity shows great potential for dye adsorption and magnetic Fe_(3)O_(4) are easy to be separated.In this work,hydrolyzed polymers of intrinsic microporosity-1/Fe_(3)O_(4) composite adsorbents were prepared by phase inversion and hydrolysis process for cationic dye adsorption.The chemical structure and morphology of the composite adsorbents were systematically characterized by several characterization methods.Using methylene blue as the target dye,the influences of solution pH,contact time,initial dye concentration,and system temperature on the methylene blue adsorption process were investigated.The incorporation of Fe_(3)O_(4) particle into hydrolyzed polymers of intrinsic microporosity-1 endow the adsorbent with high magnetic saturation(20.7 emu·g^(–1))which allows the rapid separation of the adsorbent.Furthermore,the adsorption process was simulated by adsorption kinetics,isotherms and thermodynamics to gain insight onto the intrinsic adsorption mechanism.In addition,the composite adsorbents are able to selectively adsorb cationic dyes from mixed dyes solution.Hydrolyzed polymers of intrinsic microporosity/Fe_(3)O_(4) shows only a slight decrease for methylene blue adsorption after 10 adsorption/regeneration cycles,demonstrating the outstanding regeneration performance.The high adsorption capacity,outstanding regeneration ability,together with simple preparation method,endow the composite adsorbents great potential for selective removal of cationic dyes in wastewater system.展开更多
High-performance adsorbents have been well-studied for the removal of organic dye pollutants to promote environment remediation.In this study,an Ag nanoparticle-functionalized Fe_(3)O_(4)-PDA nanocomposite adsorbent(P...High-performance adsorbents have been well-studied for the removal of organic dye pollutants to promote environment remediation.In this study,an Ag nanoparticle-functionalized Fe_(3)O_(4)-PDA nanocomposite adsorbent(PDA-Fe_(3)O_(4)-Ag)was synthesized,and the adsorption/separation performance of commonly used cationic and anionic organic dyes by the PDA-Fe_(3)O_(4)-Ag adsorbent were assessed.Overall,PDA-Fe_(3)O_(4)-Ag exhibited a significantly higher adsorption capacity for cationic dyes compared to anionic dyes,the highest of which was more than 110.0 mg/g(methylene blue(MB)),which was much higher than not only the adsorption capacities of the anionic dyes in this study but also other dye adsorption capacities reported in the literature.The dye adsorption kinetics data fitted well to both the pseudo second-order kinetics model and the Langmuir isotherm model,suggesting a monolayer-chemisorption-dominated adsorption mode.Thermodynamics analysis indicated that the adsorption process was both endothermic and spontaneous.Furthermore,the PDAFe_(3)O_(4)-Ag adsorbent achieved high photodegradation removal rates of the dyes,especially neutral red(NR)and methyl orange(MO),which were 91.2%and 87.5%,respectively.With the addition of PDA-Fe_(3)O_(4)-Ag,the degradation rate constants of NR and MO increased from 0.08×10^(−2)and 0 min^(−1)to 2.11×10^(−2)and 1.73×10^(−2)min−1,respectively.The high adsorption and photocatalytic degradation performance of the PDA-Fe_(3)O_(4)-Ag adsorbent make it an excellent candidate for removing cationic and anionic dyes from the industrial effluents.展开更多
The world wide application of dyes in papermaking, fabric, lithography, leather and other industrial production, has attracted more attention, due to water pollution caused by these organic dyes. Metal-organic framewo...The world wide application of dyes in papermaking, fabric, lithography, leather and other industrial production, has attracted more attention, due to water pollution caused by these organic dyes. Metal-organic frameworks (MOFs) which are a physical adsorption method of wastewater treatment are a kind of special three-dimensional crystal-like constituents built by multipurpose ligands and metallic ion classes, showing an advantage in removal of pollutants from solutions because of its unique properties are convenient for operation, high removal efficiency, and low cost. In this study, we investigated Fe-Mg based metal organic framework, Fe-Mg MOFs which was directly synthesized by the hydrothermal method. The obtained materials were analyzed with XRD, FT-IR, TG-DTG, SEM etc. and used for the treatment of printing and dyeing wastewater. The results showed that it has good adsorption performance for cation dye rhodamine B (RhB) and anion dye methyl orange (MO) in a wide pH range. The Fe-Mg MOF even after the 4<sup>th</sup> run, the Fe-Mg MOF catalyst still maintained nearly the initial catalytic activities. The kinetic studies revealed the adsorption process of the both contaminants obeys a pseudo-second order model. In addition, the equilibrium adsorption data of RhB and MO are in good agreement with Langmuir models. The maximum adsorption capacities are 694.44 and 236.97 mg/g at 308 K respectively. This work synthesizes a promising dual-functional adsorbent that can remove cationic and anionic dyes, which provide potential applications for actual wastewater treatment.展开更多
Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B,and then studied for their dyeing performance and morphology.The investigatio...Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B,and then studied for their dyeing performance and morphology.The investigation on the effect of modification factors on the blended fabrics indicated that the 0.5 g/L nanoparticles concentration,60 min treating time,60 ℃ treating temperature and pH 6-8 are the optimum modification process to improve the dyeability of acid dye.In addition,the SEM images show that nanoparticles can be adsorbed on the surface of modified A.venetum or cotton fibers,and the two different fibers could have the same adsorption ability to Acid Red B.展开更多
Hydrothermal carbonaceous materials and MnO2 have been proved to be promising adsorbents to remove organic dyes from wastewater.In this study,flexible MnO2 loaded hydrothermal carbon-coated electrospun poly-acrylonitr...Hydrothermal carbonaceous materials and MnO2 have been proved to be promising adsorbents to remove organic dyes from wastewater.In this study,flexible MnO2 loaded hydrothermal carbon-coated electrospun poly-acrylonitrile(AC/MnO/PAN)fiber membranes were fabricated by a facile one-step hydrothermal method and activated by NaOH solution.The composite fibers exhibited large adsorption capacity toward cationic dyes and ex-cellent mechanical properties.The adsorption performance can be ftted well with pseudo-second order model and Langmuir isotherm model.The maximum adsorption for methylene blue(MB),methyI violet(MV)and malachite green(MG)are 1173.27,1106.31 and 1129.89 mg/g,respectively,according to Langmuir ftting.The AC/MnO/PAN fiber membrane also showed satisfactory performances for selective adsorption and recyclability.In addition,based on selective adsorption,the AC/MnOz/PAN fiber membranes that are repulsive to the anionic dye methyl orange(MO)can separate the MB/MO mixture solution by dynamic filration.Thus,this work not only provides a facile strategy to fabricate large capacity adsorbents,but also dermonstrates the potential appications in the dye wastewater treatment field.展开更多
Nano-clay based pigments (NCP) are new type of pigments composed of organic dyes and layered silicate- clay nano-particles, and have already been used in polymeric coatings to improve mechanical thermal and stabilit...Nano-clay based pigments (NCP) are new type of pigments composed of organic dyes and layered silicate- clay nano-particles, and have already been used in polymeric coatings to improve mechanical thermal and stability properties. In this paper, the basic blue 41(BB41) was intercalated into Na+- montmorillonite in an aqueous medium. The dye-intercalated montmorillonite was cen- trifuged, dried, and milled to prepare the nanopigrnent particles. X-ray diffraction showed an increase in the basal spacing, thus confirming intercalation of the BB41 molecules within the nanostructures of the interlayer spaces. Fourier transform infrared spectroscopy was used for identifying the functional groups and chemical bounding of Na+-montmorillonite, BB41 and montmor- illonite-BB41. The morphology of NCP was also studied by transmission electron microscopy. Finally, thermo- gravimetric analysis and differential thermograms sug- gested the thermal stability of the intercalated dye was improved.展开更多
文摘In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGDE was in particulate form with rough surface morphology and a diameter ranging from 10 to 30μm.The adsorption performance of the TA-EGDE was evaluated in a flow-through mode using water samples contaminated with methylene blue(MB)and two-component mixed dyes,respectively.The TA-EGDE provided adsorption capacity up to 721.8 mg·g^(-1)at 65°C for MB.It showed a high removal efficiency(99%)of MB(50 mg·L^(-1))from the water sample and could recovery 90%of the adsorbed MB by eluting with acidic ethanol aqueous solution.The excellent adsorption of MB and neutral red on the TA-EGDE may be the result of the synergy of electrostatic interaction andπ-πinteraction.Furthermore,the TA-EGDE could separate dyes from water samples contaminated with twocomponent mixed dyes with a separation coefficient ranging from 1.8 to 36.5.The anionic TA-EGDE would be an effective adsorbent to remove and recycle dyes from the contaminated water.
基金supported by National Natural Science Foundation of China(No.21367023)Natural Science Foundation of Gansu Province,China(No.1208RJZA161)Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China(Nos.NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
文摘In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
基金supported by the National Key Research and Development Program of China(2017YFA0204600)National Natural Science Foundation of China(11874288)Fundamental Research Funds for the Central Universities from Tongji University。
文摘In order to remove the organic dyes of textile waste water,the silica aerogel was successfully prepared by using E-40 as a novel precursor and then dried in ambient pressure.The synthesized sample was verified by Scanning Electron Microscopy(SEM)and Fourier Transform Infrared Spectroscopy(FTIR).After calcining,the hydrophilic silica aerogel(HSA)was used as adsorbent to remove Methylene Blue(MB),Malachite Green(MG),and Gentian Violet(GV)from aqueous solution.The effects of initial concentration of dyes and adsorbent dosage on the adsorption process were examined.It was found that HSA showed excellent adsorption capacities,the maximum percentage of removal dyes could reach 98%.Herein,the Langmuir,Freundlich and de Boer-Zwikker isotherm modes were employed to discuss the adsorption behavior.The results indicated that the de Boer–Zwikker model can effectively describe the adsorption behavior.Besides,the HSA could be utilized as the recyclable adsorbent in degradation experiment,after five cycles,no obvious loss of adsorption capacity was found.As an efficient,low-cost,environmental friendly and recyclable adsorbent,silica aerogel is expected to be used for dyes removal.
基金supported by the Major Special Projects of Gansu,China (No.21ZD2JA002)the Natural Science Foundation of Gansu,China (Nos.20JR5RA564 and 20JR5RA562)。
文摘Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green and convenient strategy for the fabrication of porous material via aqueous foam templates,which was synergistically stabilized by Codonopsis pilosula(CP)and clay minerals of attapulgite(APT).The characterization results revealed that the APT was modified by organic molecules leached from CP and anchored at the air-water interface,which improved the foam stability significantly.The novel porous material of polyacrylamide/Codonopsis pilosula/attapulgite(PAM/CP/APT)templated from the aqueous foam via a polymerization reaction had excellent adsorption capacity for the cationic dyes methyl violet(MV)and methylene blue(MB),and the adsorption capacity can reach 755.85 mg/g and557.64 mg/g,respectively.More importantly,the adsorption capacity of spent adsorbent material was still over 200 mg/g after being recycled five times through a simple carbonization process,and then it was added to the plant pot,the total biomass was increased by about86.42%.This study provided a green and sustainable pathway for the preparation,application and subsequent processing of porous materials.
文摘The kinetics of hydrolysis of cationic reactive disperse dyes containing quaternary group and chemical shift(13CNMR) of the adjacent carbon atoms with pyridine-acetylamino were discussed. The results show pyridine-acetylamino reactive group had higher reactivity than chloroacetylamino and chemical shift(13 CNMR) of the adjacent carbon atoms with pyridine-acetylamino moved 18.77 ppm.
文摘TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.
基金Supported by the National Natural Science Foundation of China(2137604221421005)+2 种基金the National Key Technology R&D Program(2013BAF08B06)Innovative Research Team of Ministry of Education of the People's Republic of China(IRT-13R06)Dalian University of Technology(DUT2013TB07)
文摘Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.
文摘Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-bylayber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex fihns is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.
文摘The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron microscopy (SEM). It comes to the conclusions that the larger the crystallite size in the fibers is , the better the dyeable properties of the fibers are and there is a little compatibility between the dyeable agent and polypropylene resin. And the dye-uptake of the fibers may be up to 90% because the dyeable agent can uniformly be scattered in polypropylene.
基金supported by the National Natural Science Foundation of China(Grant Nos.22178327 and 52003250)China Postdoctoral Science Foundation(Grant No.2020M682351)+1 种基金Excellent Youth Foundation of Henan Scientific Committee(Grant No.222300420018)Key Scientific Research Project of Universities in Henan Province(Grant No.21zx006).
文摘Polymers of intrinsic microporosity shows great potential for dye adsorption and magnetic Fe_(3)O_(4) are easy to be separated.In this work,hydrolyzed polymers of intrinsic microporosity-1/Fe_(3)O_(4) composite adsorbents were prepared by phase inversion and hydrolysis process for cationic dye adsorption.The chemical structure and morphology of the composite adsorbents were systematically characterized by several characterization methods.Using methylene blue as the target dye,the influences of solution pH,contact time,initial dye concentration,and system temperature on the methylene blue adsorption process were investigated.The incorporation of Fe_(3)O_(4) particle into hydrolyzed polymers of intrinsic microporosity-1 endow the adsorbent with high magnetic saturation(20.7 emu·g^(–1))which allows the rapid separation of the adsorbent.Furthermore,the adsorption process was simulated by adsorption kinetics,isotherms and thermodynamics to gain insight onto the intrinsic adsorption mechanism.In addition,the composite adsorbents are able to selectively adsorb cationic dyes from mixed dyes solution.Hydrolyzed polymers of intrinsic microporosity/Fe_(3)O_(4) shows only a slight decrease for methylene blue adsorption after 10 adsorption/regeneration cycles,demonstrating the outstanding regeneration performance.The high adsorption capacity,outstanding regeneration ability,together with simple preparation method,endow the composite adsorbents great potential for selective removal of cationic dyes in wastewater system.
基金support from Key R&D Program of Jiangsu Province,China(BE2020024).
文摘High-performance adsorbents have been well-studied for the removal of organic dye pollutants to promote environment remediation.In this study,an Ag nanoparticle-functionalized Fe_(3)O_(4)-PDA nanocomposite adsorbent(PDA-Fe_(3)O_(4)-Ag)was synthesized,and the adsorption/separation performance of commonly used cationic and anionic organic dyes by the PDA-Fe_(3)O_(4)-Ag adsorbent were assessed.Overall,PDA-Fe_(3)O_(4)-Ag exhibited a significantly higher adsorption capacity for cationic dyes compared to anionic dyes,the highest of which was more than 110.0 mg/g(methylene blue(MB)),which was much higher than not only the adsorption capacities of the anionic dyes in this study but also other dye adsorption capacities reported in the literature.The dye adsorption kinetics data fitted well to both the pseudo second-order kinetics model and the Langmuir isotherm model,suggesting a monolayer-chemisorption-dominated adsorption mode.Thermodynamics analysis indicated that the adsorption process was both endothermic and spontaneous.Furthermore,the PDAFe_(3)O_(4)-Ag adsorbent achieved high photodegradation removal rates of the dyes,especially neutral red(NR)and methyl orange(MO),which were 91.2%and 87.5%,respectively.With the addition of PDA-Fe_(3)O_(4)-Ag,the degradation rate constants of NR and MO increased from 0.08×10^(−2)and 0 min^(−1)to 2.11×10^(−2)and 1.73×10^(−2)min−1,respectively.The high adsorption and photocatalytic degradation performance of the PDA-Fe_(3)O_(4)-Ag adsorbent make it an excellent candidate for removing cationic and anionic dyes from the industrial effluents.
文摘The world wide application of dyes in papermaking, fabric, lithography, leather and other industrial production, has attracted more attention, due to water pollution caused by these organic dyes. Metal-organic frameworks (MOFs) which are a physical adsorption method of wastewater treatment are a kind of special three-dimensional crystal-like constituents built by multipurpose ligands and metallic ion classes, showing an advantage in removal of pollutants from solutions because of its unique properties are convenient for operation, high removal efficiency, and low cost. In this study, we investigated Fe-Mg based metal organic framework, Fe-Mg MOFs which was directly synthesized by the hydrothermal method. The obtained materials were analyzed with XRD, FT-IR, TG-DTG, SEM etc. and used for the treatment of printing and dyeing wastewater. The results showed that it has good adsorption performance for cation dye rhodamine B (RhB) and anion dye methyl orange (MO) in a wide pH range. The Fe-Mg MOF even after the 4<sup>th</sup> run, the Fe-Mg MOF catalyst still maintained nearly the initial catalytic activities. The kinetic studies revealed the adsorption process of the both contaminants obeys a pseudo-second order model. In addition, the equilibrium adsorption data of RhB and MO are in good agreement with Langmuir models. The maximum adsorption capacities are 694.44 and 236.97 mg/g at 308 K respectively. This work synthesizes a promising dual-functional adsorbent that can remove cationic and anionic dyes, which provide potential applications for actual wastewater treatment.
基金supported by National Natural Science Foundation of China(No.51173086)National Key Technology R&D Program,(Nos.2014BAC13B02 and 2014BAE01B01)+1 种基金Industrialization Projects of Major Independent Innovation Achievements of Shandong Province(No.2012ZHZX1A0914)Application Basis and Cutting-edge Technology Research Project of Tianjin(No.14JCZDJC37200)
文摘Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B,and then studied for their dyeing performance and morphology.The investigation on the effect of modification factors on the blended fabrics indicated that the 0.5 g/L nanoparticles concentration,60 min treating time,60 ℃ treating temperature and pH 6-8 are the optimum modification process to improve the dyeability of acid dye.In addition,the SEM images show that nanoparticles can be adsorbed on the surface of modified A.venetum or cotton fibers,and the two different fibers could have the same adsorption ability to Acid Red B.
基金Supported by the National Natural Science Foundation of China(No.51773082).
文摘Hydrothermal carbonaceous materials and MnO2 have been proved to be promising adsorbents to remove organic dyes from wastewater.In this study,flexible MnO2 loaded hydrothermal carbon-coated electrospun poly-acrylonitrile(AC/MnO/PAN)fiber membranes were fabricated by a facile one-step hydrothermal method and activated by NaOH solution.The composite fibers exhibited large adsorption capacity toward cationic dyes and ex-cellent mechanical properties.The adsorption performance can be ftted well with pseudo-second order model and Langmuir isotherm model.The maximum adsorption for methylene blue(MB),methyI violet(MV)and malachite green(MG)are 1173.27,1106.31 and 1129.89 mg/g,respectively,according to Langmuir ftting.The AC/MnO/PAN fiber membrane also showed satisfactory performances for selective adsorption and recyclability.In addition,based on selective adsorption,the AC/MnOz/PAN fiber membranes that are repulsive to the anionic dye methyl orange(MO)can separate the MB/MO mixture solution by dynamic filration.Thus,this work not only provides a facile strategy to fabricate large capacity adsorbents,but also dermonstrates the potential appications in the dye wastewater treatment field.
文摘Nano-clay based pigments (NCP) are new type of pigments composed of organic dyes and layered silicate- clay nano-particles, and have already been used in polymeric coatings to improve mechanical thermal and stability properties. In this paper, the basic blue 41(BB41) was intercalated into Na+- montmorillonite in an aqueous medium. The dye-intercalated montmorillonite was cen- trifuged, dried, and milled to prepare the nanopigrnent particles. X-ray diffraction showed an increase in the basal spacing, thus confirming intercalation of the BB41 molecules within the nanostructures of the interlayer spaces. Fourier transform infrared spectroscopy was used for identifying the functional groups and chemical bounding of Na+-montmorillonite, BB41 and montmor- illonite-BB41. The morphology of NCP was also studied by transmission electron microscopy. Finally, thermo- gravimetric analysis and differential thermograms sug- gested the thermal stability of the intercalated dye was improved.