The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is rep...The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is reported. The esterification kinetics of lactic acid with methanol catalyzed by strong-acid cation-exchange resins (Amberlyst-15,D001, D002, NKC, 002) was studied under the condition that simulates the real catalytic environment. Experimental results were correlated by a Langmuir-Hinselwood model and the nonideality of the solution was taken into account by using activities calculated by the universal quasichemical functional group activity coefficient (UNIFAC) method.A good agreement between the model and the experimental data was achieved. Continuous purification experiments were conducted to find the optimum column configuration and operation condition for the system. The effects of various parameters, e.g. the length of different section of the column, feed rate and ratio of reactants, packing material and catalyst type, were studied. This novel system shows good separation results in lab scale, and is potential for industrial application.展开更多
the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature ...the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature are the factors which influence theion-exchange rate. The increase of solvability, stirring speed andtemperature will speed up the ion-exchange process.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H an...Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H and amberlite IR\|120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments, such as Ca and Mg from dolomite; Ca from calcite, gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum, calcite, dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments. The efficiency of amberlite IRC\|50H in the removal of associated minerals is greater than that of amberlite IR\|120.展开更多
The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the...The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.展开更多
Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully...Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully investigated. At the first exchange section, the maximum proportion of qualified zeolites(QR) was obtained at a temperature of 70 ℃, a weight hourly space velocity of 0.61 h-1, and an ion concentration of 197 mg/L. The minimum length of mass-transfer zone(MTZ) of the resin bed was achieved at a temperature of 70 ℃, a space velocity of 0.61 h-1, and an ion concentration of 423 mg/L. At the second exchange section, the length of MTZ of the resin bed was significantly increased, and the exchange of Na+ ions contained in zeolite Y was more difficult than that achieved at the first exchange section. In both the first and the second exchange sections, the zeolite Y subjected to ion exchange with the resin maintained the similar physical and chemical properties as compared to those exchanged by the conventional approaches, but the zeolite Y, which was obtained after ion exchange, contained a significantly lower content of Na2 O.展开更多
The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 15...The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.展开更多
The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in ...The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.展开更多
The cost of raw materials has the largest contribution to the final price of biodiesel produced by traditional routes, currently adopted in most industrial scale processes. That contribution comes from the need to use...The cost of raw materials has the largest contribution to the final price of biodiesel produced by traditional routes, currently adopted in most industrial scale processes. That contribution comes from the need to use edible and noble oils, with low acidity, such as soybean oil. This work proposes'the use of Macauba oil, a vegetable oil in focus in the State of Minas Gerais, Brazil, in which the current extractive yield generates a raw material with high acidity, therefore, not suitable to be used in biodiesel production. To make it technically feasible, a cationic exchange resin, the Purolite CT275DR, was used as a catalyst for esterification reaction with samples of Macauba oil, aiming to reduce its acidity. The resin can be reused, regenerated and easily removed from the reaction product, reducing costs with catalyst and purification stages. As a result of this work, in a sample of oil with an initial acidity of about 10% m/m were achieved acidity reductions up to 97% by using cationic resins as catalyst, demonstrating its potential use in the oil pretreatrnent step. Additionally, the data collected during all the analysis made it possible to define the chemical kinetic of the esterification reaction.展开更多
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation ex...Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.展开更多
This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified ...This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.展开更多
This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(...This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(®)MonoPlus TP 209 XL,Lewatit^(®) TP 207,Dowex^(TM)M4195(chelating resin)and Lewatit^(®) MonoPlus S 200 H(strong cationic exchange resin).To investigate the effect of time on the adsorption process,batch experiments were carried out using the following initial conditions:pH 2.0,298 K,and a proportion of 1 g of resin to 50 mL of solution.The variation of pH over time was analyzed.Chelating resin released less H+ions as the adsorption occurred,resulting in a lower drop of pH when compared to S 200 H resin.Ion adsorption by the resins was also evaluated through FT-IR and SEM−EDS before and after the experiments.Among the evaluated kinetic models(pseudo-first order,pseudo-second order,Elovich and intraparticle diffusion models),the pseudo-second order model best fits the experimental data of the adsorption of vanadium and iron by all of the four resins.M4195 resin showed the highest recovery of vanadium and the lowest adsorption of iron.Kinetic data,which are fundamental to industrial processes applications,are provided.展开更多
In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxide...In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment.展开更多
The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influenc...The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.展开更多
The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kineti...The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.展开更多
The polystyrene cation exchange resin was exchanged by La 3+ and then were carbonized to make resin carbon material. The electrochemical properties of the resin carbon material as the electrode of the lithium ion...The polystyrene cation exchange resin was exchanged by La 3+ and then were carbonized to make resin carbon material. The electrochemical properties of the resin carbon material as the electrode of the lithium ion cell were investigated. The test results show that comparing with the polystyrene cation exchange resin without adulterating, the contents of hydrogen, oxygen and sulfur are changed obviously for the resin carbon material derived from the La 3+ adulterating polystyrene cation exchange resin. The contents of hydrogen and oxygen are increased, and the one of sulfur is decreased. The test results also indicate that it is more easily to form the stratum graphite minicrystal structure with bigger diameter for the La 3+ adulterating resin. According to the electrochemical test results, the electrode derived from La 3+ adulterating polystyrene cation exchange resin has much better electrochemical property, and the capacity of charge and discharge of the electrode is increased about 30 mAh·g -1 in average.展开更多
Strongly acidic cation exchange resin(1x1,H form)has been successfully used as a catalyst in synthesis of diphenyl N-benzyloxycarbonyl-1-aminobenzylphosphonate, N-benzyloxycarbonyl-1-aminobenzylphenylphosphinic acid a...Strongly acidic cation exchange resin(1x1,H form)has been successfully used as a catalyst in synthesis of diphenyl N-benzyloxycarbonyl-1-aminobenzylphosphonate, N-benzyloxycarbonyl-1-aminobenzylphenylphosphinic acid and N-p-tolylsulfonyl-1-aminobenzyl phenylphosphinic acid in high yields.展开更多
In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethy...In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethylamine were added to modify the melamine-formaldehyde resin,respectively.The mechanism of the cationized resin was explored and the possible chemical reactions were deduced. It was concluded that,with the use of triethanolamine,the most optimum product was obtained by hydroxymethylation for 30 min with a temperature of 85℃ and p H of 9. 0 where n( melamine) ∶ n( formaldehyde) ∶ n( methanol) ∶ n( triethanolamine) was 100 ∶ 330 ∶ 450 ∶ 15. With the combined use of dimethylamine and methanol,the optimal product was acquired by condensation for 30 min at a temperature of 50℃ and p H of 2. 0 at melamine, formaldehyde, methanol, and dimethylamine molar ratio of100∶ 330∶ 350∶ 20. With the only use of dimethylamine,the optimal product was obtained by condensation at melamine,formaldehyde,dimethylamine molar ratio of 100∶ 330∶ 10. The wet tensile strength of fruit-bagging paper was improved by adding cationized melamine-formaldehyde resin. The zeta potential,charge density,and conductivity of the melamine-formaldehyde resin were also studied.展开更多
In this paper, it was investigated that the effect of parameters such as the ionic strength, pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model dr...In this paper, it was investigated that the effect of parameters such as the ionic strength, pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride (PE) from uncoated drug-resin complex. The drug-resin complex was prepared by the reaction of PE with strongly acidic cation exchange resin (001×4, 001×7, 001×14). The result showed that the loading of PE increased with the increase of temperatures. The release of PE from drug-resin complex at 37℃ was monitored in vitro. From the experiments, it was found that the release rate of PE depends on the pH, composition of the releasing media, increased at lower pH media or with increase of ionic strength of media. Moreover, the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.展开更多
To develop a simple and rapid purification method of rohitukine from the stem bark of Dysoxylum binectariferum. A L9 (34) orthogonal test was designed to optimize the extraction condition. Rohitukine in the plant e...To develop a simple and rapid purification method of rohitukine from the stem bark of Dysoxylum binectariferum. A L9 (34) orthogonal test was designed to optimize the extraction condition. Rohitukine in the plant extract was purified by using solvent-solvent partition and cation exchange resion (CER). Five different types of packing materials, including XAD-2 resin, polyamide, Sephadex LH-20, ODS and CER, were compared and CER showed the best capacity for rohitukine separation. The purification procedure was optimized as follows: the plant material powder was extracted with 70% ethanol (v/m = 60) by ultrasonic agitation for 60 min, then the 70% ethanol extract was dissolved in aqueous solution (pH 1, adjusted with 0.5 mol/L HCl) and extracted with equal volume of n-butanol. The aqueous layer was retained and the pH was adjusted to 10 with 25% aqueous ammonia and a solventsolvent partition was performed with equal volume of n-butanol. The obtained n-butanol extract was dissolved in aqueous solution (pH 1, adjusted with 0.5 mol/L HCl), and purified by a CER column eluting with H2O and 70% ethanol (pH 10, adjusted with 25% aqueous ammonia), successively. Rohitukine existed in 70% ethanol eluate, with a purity up to 53.3%. The method developed in this study provides a simple and rapid approach for the preparation of rohitukine from the stem bark ofD. binectariferum.展开更多
文摘The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is reported. The esterification kinetics of lactic acid with methanol catalyzed by strong-acid cation-exchange resins (Amberlyst-15,D001, D002, NKC, 002) was studied under the condition that simulates the real catalytic environment. Experimental results were correlated by a Langmuir-Hinselwood model and the nonideality of the solution was taken into account by using activities calculated by the universal quasichemical functional group activity coefficient (UNIFAC) method.A good agreement between the model and the experimental data was achieved. Continuous purification experiments were conducted to find the optimum column configuration and operation condition for the system. The effects of various parameters, e.g. the length of different section of the column, feed rate and ratio of reactants, packing material and catalyst type, were studied. This novel system shows good separation results in lab scale, and is potential for industrial application.
文摘the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature are the factors which influence theion-exchange rate. The increase of solvability, stirring speed andtemperature will speed up the ion-exchange process.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
文摘Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H and amberlite IR\|120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments, such as Ca and Mg from dolomite; Ca from calcite, gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum, calcite, dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments. The efficiency of amberlite IRC\|50H in the removal of associated minerals is greater than that of amberlite IR\|120.
基金Project (2014CB643405) supported by National Research Development Program of China
文摘The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.
基金the financial support by the State Key Development Program for Basic Research of China(Grant No.2012CB224800)
文摘Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully investigated. At the first exchange section, the maximum proportion of qualified zeolites(QR) was obtained at a temperature of 70 ℃, a weight hourly space velocity of 0.61 h-1, and an ion concentration of 197 mg/L. The minimum length of mass-transfer zone(MTZ) of the resin bed was achieved at a temperature of 70 ℃, a space velocity of 0.61 h-1, and an ion concentration of 423 mg/L. At the second exchange section, the length of MTZ of the resin bed was significantly increased, and the exchange of Na+ ions contained in zeolite Y was more difficult than that achieved at the first exchange section. In both the first and the second exchange sections, the zeolite Y subjected to ion exchange with the resin maintained the similar physical and chemical properties as compared to those exchanged by the conventional approaches, but the zeolite Y, which was obtained after ion exchange, contained a significantly lower content of Na2 O.
基金supported financially by the Purolite Company and Chinese National Natural Science Foundation(20674069)
文摘The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.
基金supported financially by the Purolite Company and the Chinese National Natural Science Foundation (20674069)
文摘The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.
文摘The cost of raw materials has the largest contribution to the final price of biodiesel produced by traditional routes, currently adopted in most industrial scale processes. That contribution comes from the need to use edible and noble oils, with low acidity, such as soybean oil. This work proposes'the use of Macauba oil, a vegetable oil in focus in the State of Minas Gerais, Brazil, in which the current extractive yield generates a raw material with high acidity, therefore, not suitable to be used in biodiesel production. To make it technically feasible, a cationic exchange resin, the Purolite CT275DR, was used as a catalyst for esterification reaction with samples of Macauba oil, aiming to reduce its acidity. The resin can be reused, regenerated and easily removed from the reaction product, reducing costs with catalyst and purification stages. As a result of this work, in a sample of oil with an initial acidity of about 10% m/m were achieved acidity reductions up to 97% by using cationic resins as catalyst, demonstrating its potential use in the oil pretreatrnent step. Additionally, the data collected during all the analysis made it possible to define the chemical kinetic of the esterification reaction.
基金Supported by the National Basic Research Program of China(2016YFD0200404)
文摘Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.
基金support from the Natural Science Foundation of Shandong Province (Grant no.ZR2013BL010)the Research Excellence Award of Shandong University of Technology and the Zibo Technology Research and Development Program of China (Grant no.2013GG04110)
文摘This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.
基金provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,grant 130978/2020-5)to the Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP,grant 2019/11866-5)to CAPES for the financial support.
文摘This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(®)MonoPlus TP 209 XL,Lewatit^(®) TP 207,Dowex^(TM)M4195(chelating resin)and Lewatit^(®) MonoPlus S 200 H(strong cationic exchange resin).To investigate the effect of time on the adsorption process,batch experiments were carried out using the following initial conditions:pH 2.0,298 K,and a proportion of 1 g of resin to 50 mL of solution.The variation of pH over time was analyzed.Chelating resin released less H+ions as the adsorption occurred,resulting in a lower drop of pH when compared to S 200 H resin.Ion adsorption by the resins was also evaluated through FT-IR and SEM−EDS before and after the experiments.Among the evaluated kinetic models(pseudo-first order,pseudo-second order,Elovich and intraparticle diffusion models),the pseudo-second order model best fits the experimental data of the adsorption of vanadium and iron by all of the four resins.M4195 resin showed the highest recovery of vanadium and the lowest adsorption of iron.Kinetic data,which are fundamental to industrial processes applications,are provided.
基金Vietnam National University-Ho Chi Minh City under grant number A2020-16-01.
文摘In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment.
基金Project(2005) supported by the Basic Technology Research Item of Explosive Industry, China
文摘The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.
基金Supported by a grant from Tianji Coal Chemical Group Co.Ltd.(Project no.2012-1978)Shenzhen Batian Ecological Engineering Co.,Ltd.(Project no.2013-0909).
文摘The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.
文摘The polystyrene cation exchange resin was exchanged by La 3+ and then were carbonized to make resin carbon material. The electrochemical properties of the resin carbon material as the electrode of the lithium ion cell were investigated. The test results show that comparing with the polystyrene cation exchange resin without adulterating, the contents of hydrogen, oxygen and sulfur are changed obviously for the resin carbon material derived from the La 3+ adulterating polystyrene cation exchange resin. The contents of hydrogen and oxygen are increased, and the one of sulfur is decreased. The test results also indicate that it is more easily to form the stratum graphite minicrystal structure with bigger diameter for the La 3+ adulterating resin. According to the electrochemical test results, the electrode derived from La 3+ adulterating polystyrene cation exchange resin has much better electrochemical property, and the capacity of charge and discharge of the electrode is increased about 30 mAh·g -1 in average.
文摘Strongly acidic cation exchange resin(1x1,H form)has been successfully used as a catalyst in synthesis of diphenyl N-benzyloxycarbonyl-1-aminobenzylphosphonate, N-benzyloxycarbonyl-1-aminobenzylphenylphosphinic acid and N-p-tolylsulfonyl-1-aminobenzyl phenylphosphinic acid in high yields.
文摘In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethylamine were added to modify the melamine-formaldehyde resin,respectively.The mechanism of the cationized resin was explored and the possible chemical reactions were deduced. It was concluded that,with the use of triethanolamine,the most optimum product was obtained by hydroxymethylation for 30 min with a temperature of 85℃ and p H of 9. 0 where n( melamine) ∶ n( formaldehyde) ∶ n( methanol) ∶ n( triethanolamine) was 100 ∶ 330 ∶ 450 ∶ 15. With the combined use of dimethylamine and methanol,the optimal product was acquired by condensation for 30 min at a temperature of 50℃ and p H of 2. 0 at melamine, formaldehyde, methanol, and dimethylamine molar ratio of100∶ 330∶ 350∶ 20. With the only use of dimethylamine,the optimal product was obtained by condensation at melamine,formaldehyde,dimethylamine molar ratio of 100∶ 330∶ 10. The wet tensile strength of fruit-bagging paper was improved by adding cationized melamine-formaldehyde resin. The zeta potential,charge density,and conductivity of the melamine-formaldehyde resin were also studied.
文摘In this paper, it was investigated that the effect of parameters such as the ionic strength, pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride (PE) from uncoated drug-resin complex. The drug-resin complex was prepared by the reaction of PE with strongly acidic cation exchange resin (001×4, 001×7, 001×14). The result showed that the loading of PE increased with the increase of temperatures. The release of PE from drug-resin complex at 37℃ was monitored in vitro. From the experiments, it was found that the release rate of PE depends on the pH, composition of the releasing media, increased at lower pH media or with increase of ionic strength of media. Moreover, the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.
基金Scientific Research Foundation for the Returned Overseas Chinese Scholars by Ministry of Education of China (Grant No.[2004]527).
文摘To develop a simple and rapid purification method of rohitukine from the stem bark of Dysoxylum binectariferum. A L9 (34) orthogonal test was designed to optimize the extraction condition. Rohitukine in the plant extract was purified by using solvent-solvent partition and cation exchange resion (CER). Five different types of packing materials, including XAD-2 resin, polyamide, Sephadex LH-20, ODS and CER, were compared and CER showed the best capacity for rohitukine separation. The purification procedure was optimized as follows: the plant material powder was extracted with 70% ethanol (v/m = 60) by ultrasonic agitation for 60 min, then the 70% ethanol extract was dissolved in aqueous solution (pH 1, adjusted with 0.5 mol/L HCl) and extracted with equal volume of n-butanol. The aqueous layer was retained and the pH was adjusted to 10 with 25% aqueous ammonia and a solventsolvent partition was performed with equal volume of n-butanol. The obtained n-butanol extract was dissolved in aqueous solution (pH 1, adjusted with 0.5 mol/L HCl), and purified by a CER column eluting with H2O and 70% ethanol (pH 10, adjusted with 25% aqueous ammonia), successively. Rohitukine existed in 70% ethanol eluate, with a purity up to 53.3%. The method developed in this study provides a simple and rapid approach for the preparation of rohitukine from the stem bark ofD. binectariferum.