期刊文献+
共找到1,034篇文章
< 1 2 52 >
每页显示 20 50 100
Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries 被引量:1
1
作者 Zejun Sun Jinlin Yang +18 位作者 Hongfei Xu Chonglai Jiang Yuxiang Niu Xu Lian Yuan Liu Ruiqi Su Dayu Liu Yu Long Meng Wang Jingyu Mao Haotian Yang Baihua Cui Yukun Xiao Ganwen Chen Qi Zhang Zhenxiang Xing Jisheng Pan Gang Wu Wei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期1-17,共17页
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom... An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles. 展开更多
关键词 Cationic surfactant Lithium nitrate additive Solid-electrolyte interphase Electric double layer Lithium metal batteries
下载PDF
Label-free in-vivo classi-cation and tracking of red blood cells and platelets using Dynamic-YOLOv4 network 被引量:1
2
作者 Caizhong Guan Bin He +6 位作者 Hongting Zhang Shangpan Yang Yang Xu Honglian Xiong Yaguang Zeng Mingyi Wang Xunbin Wei 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第5期89-103,共15页
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both ... In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scienti¯c research and clinical applications.However,the conventional approach for improving classi¯cation accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classi¯cation accuracy by integrating absorption intensity°uctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebra¯sh as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classi¯cation applications. 展开更多
关键词 LABEL-FREE in-vivoflow cytometry cell classi¯cation and tracking D-YOLOv4
下载PDF
Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
3
作者 徐耀 黄舒伟 +1 位作者 丁泓铭 马余强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,... Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers. 展开更多
关键词 RNA DNA lipid bilayer molecular dynamics interface interaction divalent cation
下载PDF
Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis
4
作者 Yanran Zhu Yue Zhou +4 位作者 Qian Chen Rongqiang Fu Zhaoming Liu Liang Ge Tongwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期45-57,共13页
Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po... Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization. 展开更多
关键词 Selective electrodialysis WASTEWATER Monovalent cation permselective membranes SEPARATION RECOVERY
下载PDF
Cation effects in electrocatalytic reduction reactions:Recent advances
5
作者 Qinghui Ren Liang Xu +4 位作者 Mengyu Lv Zhiyuan Zhang Zhenhua Li Mingfei Shao Xue Duan 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期16-32,共17页
Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high... Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development. 展开更多
关键词 ELECTROCATALYSIS Reduction reaction Cation effect MECHANISM APPLICATION
下载PDF
Fabrication and Properties of a New Reactive Diluent for Cationic UV Curing
6
作者 吴正森 黄笔武 +1 位作者 LIU Yuansheng SHEN Han 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1053-1060,共8页
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth... The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa. 展开更多
关键词 UV curing cation curing reactive diluent SILOXANE
下载PDF
Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy
7
作者 Xueqiu You Dongao Zhang +4 位作者 Xia‑Guang Zhang Xiangyu Li Jing‑Hua Tian Yao‑Hui Wang Jian‑Feng Li 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期303-312,共10页
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U... Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure. 展开更多
关键词 In situ Raman Interfacial water Hydrogen evolution reaction CATIONS
下载PDF
Cationic ordering transition in oxygen-redox layered oxide cathodes
8
作者 Xinyan Li Ang Gao +10 位作者 Qinghua Zhang Hao Yu Pengxiang Ji Dongdong Xiao Xuefeng Wang Dong Su Xiaohui Rong Xiqian Yu Hong Li Yong-Sheng Hu Lin Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na... Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes. 展开更多
关键词 cationic ordering layered oxide cathodes oxygen redox sodium-ion batteries
下载PDF
Enhancing selectivity in acidic CO_(2) electrolysis:Cation effects and catalyst innovation
9
作者 Zichao Huang Tinghui Yang +4 位作者 Yingbing Zhang Chaoqun Guan Wenke Gui Min Kuang Jianping Yang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期61-80,共20页
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien... The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested. 展开更多
关键词 ACIDIC CO_(2) electrolysis High selectivity Cation effects Catalyst design Competitive HER
下载PDF
Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells
10
作者 Ruikun Cao Kexuan Sun +8 位作者 Chang Liu Yuhong Mao Wei Guo Ping Ouyang Yuanyuan Meng Ruijia Tian Lisha Xie Xujie Lü Ziyi Ge 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期325-340,共16页
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker... This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit. 展开更多
关键词 Electron-phonon coupling A-site cation engineering Non-radiative recombination
下载PDF
Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes
11
作者 Cansu Kök Lei Wang +3 位作者 Jean Gustavo A.Ruthes Antje Quade Matthew E.Suss Volker Presser 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期254-261,共8页
The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using comm... The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability. 展开更多
关键词 atomic layer deposition cation selectivity electrochemical lithium-ion extraction fuel cell
下载PDF
Atomically Adjustable Rhodium Catalyst Synthesis with Outstanding Mass Activity via Surface-Li mi ted Cation Exchange
12
作者 Hak Hyeon Lee Dong Su Kim +3 位作者 Swagotom Sarker Ji Hoon Choi Ho Seong Lee Hyung Koun Cho 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期83-92,共10页
Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh bein... Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts. 展开更多
关键词 cation exchange synthesis electrochemical metallization hydrazine oxidation reaction mass activity rhodium catalyst
下载PDF
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
13
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
下载PDF
Genome-Wide Discovery and Expression Profiling of the SWEET Sugar Transporter Gene Family in Woodland Strawberry (Fragaria vesca) under Developmental and Stress Conditions: Structural and Evolutionary Analysis
14
作者 Shoukai Lin Yifan Xiong +3 位作者 Shichang Xu Manegdebwaoaga Arthur Fabrice Kabore Fan Lin Fuxiang Qiu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1485-1502,共18页
The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET p... The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries. 展开更多
关键词 Woodland strawberry SWEET gene sugar transporter genome-wide identification characterization expression
下载PDF
Identification of Mulberry Bacterial Blight Caused by Klebsiella oxytoca in Bazhong,Sichuan,China
15
作者 Yuan Huang Jia Wei +8 位作者 Peigang Liu Yan Zhu Tianbao Lin Zhiqiang Lv Yijun Li Mei Zong Yun Zhou Junshan Gao Zilong Xu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第8期1995-2008,共14页
To provide a scientific basis for controlling mulberry bacterial blight in Bazhong,Sichuan,China(BSC),this study aimed to isolate and purify pathogenic bacteria from diseased branches of mulberry trees in the region a... To provide a scientific basis for controlling mulberry bacterial blight in Bazhong,Sichuan,China(BSC),this study aimed to isolate and purify pathogenic bacteria from diseased branches of mulberry trees in the region and to clarify their taxonomic status using morphological observation,physiological and biochemical detection,molecular-level identification,and the construction of a phylogenetic tree.A total of 218 bacterial strains were isolated from samples of diseased mulberry branches.Of these,7 strains were identified as pathogenic bacteria based on pathogenicity tests conducted in accordance with Koch’s postulates.Preliminary findings from the analysis of the 16S rRNA sequence indicated that the 7 pathogenic bacteria are members of Klebsiella spp.Morphological observation revealed that the pathogenic bacteria were oval-shaped and had capsules but no spores.They could secrete pectinase,cellulase,and protease and were able to utilize D-glucose,D-mannose,D-maltose,and D-Cellobiose.The 7 strains of pathogenic bacteria exhibited the highest homology with Klebsiella oxytoca.This study identifies Klebsiella oxytoca as the causative agent of mulberry bacterial blight in BSC,laying the foundation for the prevention and control of this pathogen and further investigation into its pathogenic mechanism. 展开更多
关键词 MULBERRY bacterial blight pathogenic identification Klebsiella spp. Klebsiella oxytoca
下载PDF
The Adsorption Properties of TEMPO Oxidized Cellulose against the Mixture of Methylene Blue and Rhemazol Yellow FG
16
作者 I.Putu Mahendra Kartika Dinita 《Journal of Renewable Materials》 EI CAS 2024年第8期1369-1382,共14页
TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups... TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles. 展开更多
关键词 CELLULOSE TEMPO oxidation cationic and anionic dyes dye separation
下载PDF
Application of Transgenic Technology in Identification for Gene Function on Grasses
17
作者 Lijun Zhang Ying Liu +1 位作者 Yushou Ma Xinyou Wang Qinghai 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第8期1913-1941,共29页
Perennial grasses have developed intricate mechanisms to adapt to diverse environments,enabling their resistance to various biotic and abiotic stressors.These mechanisms arise from strong natural selection that contri... Perennial grasses have developed intricate mechanisms to adapt to diverse environments,enabling their resistance to various biotic and abiotic stressors.These mechanisms arise from strong natural selection that contributes to enhancing the adaptation of forage plants to various stress conditions.Methods such as antisense RNA technology,CRISPR/Cas9 screening,virus-induced gene silencing,and transgenic technology,are commonly utilized for investigating the stress response functionalities of grass genes in both warm-season and cool-season varieties.This review focuses on the functional identification of stress-resistance genes and regulatory elements in grasses.It synthesizes recent studies on mining functional genes,regulatory genes,and protein kinase-like signaling factors involved in stress responses in grasses.Additionally,the review outlines future research directions,providing theoretical support and references for further exploration of(i)molecular mechanisms underlying grass stress responses,(ii)cultivation and domestication of herbage,(iii)development of high-yield varieties resistant to stress,and(iv)mechanisms and breeding strategies for stress resistance in grasses. 展开更多
关键词 Grasses regulatory genes protein kinase-like signaling factors gene function identification resistance breeding
下载PDF
Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress
18
作者 Honghui Sun Ruichao Liu +6 位作者 Yueting Qi Hongsheng Gao Xueting Wang Ning Jiang Xiaotong Guo Hongxia Zhang Chunyan Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期533-549,共17页
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR... Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines. 展开更多
关键词 Genome-wide identification glutamate receptor(GLR)family low temperature stress salt stress GRAPE
下载PDF
Enhancing potassium-ion storage of Bi_(2)S_(3) through external–internal dual synergism: Ti_(3)C_(2)T_(x) compositing and Cu^(2+) doping
19
作者 Dawei Sha Yurong You +5 位作者 Rongxiang Hu Jianxiang Ding Xin Cao Yuan Zhang Long Pan ZhengMing Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期39-51,共13页
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ... Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells. 展开更多
关键词 Bi_(2)S_(3) cation doping potassium-ion batteries synergic mechanism Ti_(3)C_(2)T_(x)compositing
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
20
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部