A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the...A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.展开更多
Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab...Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.展开更多
文摘A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.
文摘Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.