To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zone...To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies.展开更多
Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change o...Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.展开更多
Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key para...Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.展开更多
Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over...Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.展开更多
基金Supported by the National Key R&D Program(2018YFC0604501).
文摘To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies.
基金Project 50774079 supported by the National Natural Science Foundation of China
文摘Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2007CB209400)the National Natural Science Foundation of China (No.51004104)
文摘Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.
基金Supported by National Natural Science Fundation of China(50674045)
文摘Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.