The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time ...The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.展开更多
The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collap...The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collapse pressure. A cavitation model was developed through dimensional analysis and direct numerical simulation of collapse of bubble cluster. Bubble number density was included in proposed model to characterize the internal structure of bubble cloud. Implemented on flows over a projectile, the proposed model predicts a higher collapse pressure compared with Singhal model. Results indicate that the collapse pressure of detached cavitation cloud is affected by bubble number density.展开更多
The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in...The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in diesel engines,this phenomenon frequently occurs in the nozzle;however,cloud cavitation shedding frequency and its mechanism have yet to be studied in detail.In this study,a visualization experiment and proper orthogonal decomposition(POD)method were used to study the variations in the cavitation shedding frequency and analyze the cavitation flow structure in a 3 mm square nozzle.In addition,large eddy simulation(LES)was performed to explore the causes of cavitation shedding,and the relationship between cavitation and vortices.With the increase of the inlet and outlet pressure differences,and fuel temperatures,the degree of cavitation intensified and the frequency of cavitation cloud shedding gradually decreased.LES demonstrated the relationship between the vortices,and the development,shedding,and collapse of the cavitation clouds.Further,the re-entrant jet mechanism was found to be the main reason for the shedding of cavitation clouds.Through comparative experiments,the fluctuation of the vapor volume fraction in the nozzle hole accurately predicted the regions with stable cavitation,re-entrant jet,cavitation cloud shedding,and collapse.The frequency of cavitation shedding can then be calculated.This study employed an instantaneous POD method based on instantaneous cavitation images,which can distinguish the evolution process and characteristics of cavitation in the nozzle hole of diesel engines.展开更多
Recent studies have shown that the collapse of cavitation bubbles in a jet pump can generate an extremely high pressure with many potential applications. The dynamics of the bubble is governed by the Rayleigh-Plesset ...Recent studies have shown that the collapse of cavitation bubbles in a jet pump can generate an extremely high pressure with many potential applications. The dynamics of the bubble is governed by the Rayleigh-Plesset equation. With the bubble dynamics equation and the heat and mass transfer model solved with the Runge-Kutta fourth order adaptive step size method, the oscillations of the bubble in the diffuser of the jet pump are assessed under varied conditions. To obtain the pressure variation along the diffuser, the Bernoulli equation and the pressure measured in experiment are coupled. The results of simulation show that a transient motion of the bubbles can be obtained in the diffuser quantitatively, to obtain the pressure and temperature shock in the bubble. Moreover, increasing the outlet pressure coefficient would result in a more intense bubble collapsing process, which can be used in the subsequent studies of the cavitation applications. The predictions are compared with experiments with good agreement.展开更多
The present paper proposes a multiphase flow approach for capturing the time-resolved collapse course of bubble clusters in various geometrical configurations.The simulation method is first verified by computing the d...The present paper proposes a multiphase flow approach for capturing the time-resolved collapse course of bubble clusters in various geometrical configurations.The simulation method is first verified by computing the dynamic behavior of an isolated vapor bubble placed in a uniform ambient pressure.The comparison between the numerical result and the theoretical solution indicates that the method can accurately capture the bubble shape,the characteristic time and the extremely high pressure induced by the collapse.Then the simulation method is applied to investigate the behavior of two kinds of bubble clusters in hexagonal and cubic geometrical configurations.The predicted collapsing sequence and the shape characteristics of the bubbles are generally in agreement with the experimental results.The bubbles transform and break from the outer layer toward the inner layers.In each layer,the bubbles on the corner first change into a pea shape and cave before collapsing,then the bubbles on the sides begin to shrink.It is also found that,in comparison with the case of an isolated single bubble,the central bubble in the cluster always contracts more slowly at the early stage and collapses more violently at the final stage.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11674173,81627802,11474161,11374155 and 11474001the Qing Lan Project
文摘The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.
基金support from the National Natural Science Foundation of China (11402276)
文摘The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collapse pressure. A cavitation model was developed through dimensional analysis and direct numerical simulation of collapse of bubble cluster. Bubble number density was included in proposed model to characterize the internal structure of bubble cloud. Implemented on flows over a projectile, the proposed model predicts a higher collapse pressure compared with Singhal model. Results indicate that the collapse pressure of detached cavitation cloud is affected by bubble number density.
基金This work was supported by of the National Natural Science Foundation of China(No.50906041).
文摘The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in diesel engines,this phenomenon frequently occurs in the nozzle;however,cloud cavitation shedding frequency and its mechanism have yet to be studied in detail.In this study,a visualization experiment and proper orthogonal decomposition(POD)method were used to study the variations in the cavitation shedding frequency and analyze the cavitation flow structure in a 3 mm square nozzle.In addition,large eddy simulation(LES)was performed to explore the causes of cavitation shedding,and the relationship between cavitation and vortices.With the increase of the inlet and outlet pressure differences,and fuel temperatures,the degree of cavitation intensified and the frequency of cavitation cloud shedding gradually decreased.LES demonstrated the relationship between the vortices,and the development,shedding,and collapse of the cavitation clouds.Further,the re-entrant jet mechanism was found to be the main reason for the shedding of cavitation clouds.Through comparative experiments,the fluctuation of the vapor volume fraction in the nozzle hole accurately predicted the regions with stable cavitation,re-entrant jet,cavitation cloud shedding,and collapse.The frequency of cavitation shedding can then be calculated.This study employed an instantaneous POD method based on instantaneous cavitation images,which can distinguish the evolution process and characteristics of cavitation in the nozzle hole of diesel engines.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472197,51679169 and 51109174)the Fundamental Research Funds for the Central Universities(Grant No.2042016gf0032)
文摘Recent studies have shown that the collapse of cavitation bubbles in a jet pump can generate an extremely high pressure with many potential applications. The dynamics of the bubble is governed by the Rayleigh-Plesset equation. With the bubble dynamics equation and the heat and mass transfer model solved with the Runge-Kutta fourth order adaptive step size method, the oscillations of the bubble in the diffuser of the jet pump are assessed under varied conditions. To obtain the pressure variation along the diffuser, the Bernoulli equation and the pressure measured in experiment are coupled. The results of simulation show that a transient motion of the bubbles can be obtained in the diffuser quantitatively, to obtain the pressure and temperature shock in the bubble. Moreover, increasing the outlet pressure coefficient would result in a more intense bubble collapsing process, which can be used in the subsequent studies of the cavitation applications. The predictions are compared with experiments with good agreement.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472174,11572194 and 11372185)
文摘The present paper proposes a multiphase flow approach for capturing the time-resolved collapse course of bubble clusters in various geometrical configurations.The simulation method is first verified by computing the dynamic behavior of an isolated vapor bubble placed in a uniform ambient pressure.The comparison between the numerical result and the theoretical solution indicates that the method can accurately capture the bubble shape,the characteristic time and the extremely high pressure induced by the collapse.Then the simulation method is applied to investigate the behavior of two kinds of bubble clusters in hexagonal and cubic geometrical configurations.The predicted collapsing sequence and the shape characteristics of the bubbles are generally in agreement with the experimental results.The bubbles transform and break from the outer layer toward the inner layers.In each layer,the bubbles on the corner first change into a pea shape and cave before collapsing,then the bubbles on the sides begin to shrink.It is also found that,in comparison with the case of an isolated single bubble,the central bubble in the cluster always contracts more slowly at the early stage and collapses more violently at the final stage.