The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act...Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.展开更多
The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing in...The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.展开更多
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 ...Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.展开更多
In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 a...In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization be...Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.展开更多
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro...Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems.展开更多
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph...This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.展开更多
[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen...[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.展开更多
Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium up...Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.展开更多
[Objective] The study aimed to better understand the effect of different fertilizer treatments on micro-morphological characteristics of a purple soil at the 0-20 cm topsoil in a long-term fertilizer experiment. [Meth...[Objective] The study aimed to better understand the effect of different fertilizer treatments on micro-morphological characteristics of a purple soil at the 0-20 cm topsoil in a long-term fertilizer experiment. [Method] Soil micro-morphology was observed and analyzed under a single polarizing microscope. [Result] For the CK (no fertilizer) treatment, soil structure was dense with little porosity developed. Its soil microstructure was poor, sandy fabric-granular fabric. After continuously applied chemical fertilizers only for more than two decades, the soil particles did not evolve into soil structures and formed little porosity. The microstructures of soil in N, NP and NPK treatments were porphyroskelic fabric-fine sandy granular fabric, better than that of the soil in CK treatment. Adding manure obviously improved the quantity of groundmass and endowed the soil a loose structure and plenty porosity, enriched animal and plant residues, and well-formed iron-manganese nodules and humus ma- terials, all resulting in better micro-aggregates development. The type of soil microstructures in MNPK treatment was pectized-compacted takyric fabric-intertextic fabric, the best among all the treatments. [Conclusion] Combined application of both or- ganic and inorganic fertilizers can significantly improve the structure of the purple soil, enhance soil fertility and achieve soil sustainable development.展开更多
[Objective] China is the world's largest fertilizer consumer. Fertilizer plays an important role in maintaining China's food security. Along with population and economic growth, overuse of fertilizers has caused ser...[Objective] China is the world's largest fertilizer consumer. Fertilizer plays an important role in maintaining China's food security. Along with population and economic growth, overuse of fertilizers has caused serious environmental problems, such as soil acidification, decline in soil organic carbon, and agricultural non-point source pollution. This study aimed to analyze the factors influencing farmers" decision making on fertilizer use, and provide policy recommendations on ways to affect fertilization. [Method] An econometric model reflecting fertilization of rural households was estimated from a survey distributed to 1 043 households randomly selected from 19 provinces in China. [Result] Results of the study showed that education years of fertilizer decision maker, fertilizer quality, organic fertilizer application, fertilizer price, and agricultural product price had significant effects on the fertilizer application rate at 1% level. Soil nutrient affected the fertilizer application rate at 10% level. [Conclusion] Policies aimed at improving the reasonable use of fertilizer should focus on the regulation of chemical fertilizer price, foundation of the organic-inorganic fertilizer system, soil testing, formulated fertilization, and agricultural extension service.展开更多
Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before...Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.展开更多
[Objective] The research aimed to study the effects of fertilization on soil remediation.[Method]Pot fertilizer tests were conducted to remedy the soils which had off-balanced in nutrients resulted by long-term unreas...[Objective] The research aimed to study the effects of fertilization on soil remediation.[Method]Pot fertilizer tests were conducted to remedy the soils which had off-balanced in nutrients resulted by long-term unreasonable fertilization.[Result]The results showed that applying NPK fertilizers with manure was the best method to restore the soil nutrients and increase soil fertility and crop yield;NPK and NP fertilizers could balance soil fertility and increase crop yields,the effects were the same and next to MNPK.Phosphate and nitrogen respectively had the similar restoring effect with NPK fertilizers on soil from long-term NK and PK treatments.[Conclusion]Crops in soil with long-term applying NPK fertilizers had strong dependence on fertilizers.The yields of corn and wheat decreased by 78.6% and 52.8% respectively after stopping applying fertilizers.Meanwhile,The yields of corn and wheat increased by 112% and 182% respectively after stopping applying fertilizers in NK treatment as well as 15.1% and 59% in PK treatment.Manure had strong and last effect on increasing yield.展开更多
[Objective] The aim was to explore the effect of cumulus cells on the in vitro fertilization of in vitro matured bovine oocytes. [Method] The in vitro matured oocytes were divided into three groups of cumulus cells re...[Objective] The aim was to explore the effect of cumulus cells on the in vitro fertilization of in vitro matured bovine oocytes. [Method] The in vitro matured oocytes were divided into three groups of cumulus cells removal, partial removal and no removal. [Result] In the co-culture with cumulus cells, the oocytes of the removal group had higher cleavage rate and blastocyst rate (74.4%±4.1, 53.7%±5.1) than those of the no removal group (72.7%±5.1, 52.4%±3.5), but the difference was not significant (P〉0.05), while both groups had better performances than the re- moval group (39.6%±4.5, 18.8%±4.6) with the difference reaching the significant level (P〈0.05). All the three groups showed significant difference with the control. The combination of cumulus cells and melatonin achieved the best effects as the cleavage rate and blastocyst rate of the partial removal group (79.8%±3.7, 56.5%±5.1) were better than those of the no removal group (78.2%±2.6, 55.8%±4.6), and the difference was not significant, while both group had better performances than the removal group (48.3%±5.5, 22.7%±4.3) and the control group with the differences reaching the significant level (P〈0.05). [Conclusion] The study provided technical support for the production of dairy cows and beef cattle.展开更多
This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves,...This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves, with mulberry trees in spring and autumn as the material and as per "3414" experimental design. The results showed that the qualities and active substance content of mulberry leaves changed from increasing to decreasing with its development; crude protein and solu-ble sugar achieved the peak on August 20; total flavonoid and 1-deoxynojirimycin was the highest on May 15. Fertilizations with N, P and K fertilizers at different amounts had significant effects on quality of mulberry leaf and content of active substances. Specifically, as fertilizer amount increased, the content of active sub- stances grew dramatically and achieved the highest at level 2 (X^2X=X~_). Based on fertilizer effect functions of objective yield, the recommended amounts of N, P and K fertilizers based on crude protein, soluble sugar, flavonoid content and DNJ in test sites were 718.46, 220.11 and 305.23 kg/hm2, when the highest of crude protein in mulberry leaf was 1 813.83 kg/hm2. When N, P and K fertilizers were recommended at 666.54, 204.41 and 243.18 kg/hm2, soluble sugar in mulberry leaf achieved the peak at 1 042.65 kg/hm2. When N, P and K fertilizers were at 675.96, 326.49 and 462.90 kg/hm2, flavonoid content achieved the maximum at 147.90 kg/hm2. When N, P and K fertilizers were at 720.9, 225.11 and 323.63 kg/hm2, DNJ content was the highest at 13.55 kg/hm2.展开更多
This review gives a brief retrospect to the development on in vitro fertilization (IVF) of angiosperms in China. During the last decade Chinese scientists put great enthusiasm and efforts on IVF system construction an...This review gives a brief retrospect to the development on in vitro fertilization (IVF) of angiosperms in China. During the last decade Chinese scientists put great enthusiasm and efforts on IVF system construction and built up notable contributions to the flourish of this field. Keeping pace with international development and participating international cooperation in the field of IVF, Chinese scientists have now focused on the investigation of basic mechanism relevant to possible gamete interaction, egg cell activation and early embryogenesis by IVF. In vitro manipulation techniques are combined with cytological and molecular biological approaches to unveil the double fertilization mysteries.展开更多
The change rules of the fertility of red soil paddy under the long-term different fertilization were investigated, and the reasonable fertilization mode to improve the fertility of red soil paddy was discussed. There ...The change rules of the fertility of red soil paddy under the long-term different fertilization were investigated, and the reasonable fertilization mode to improve the fertility of red soil paddy was discussed. There were eight treatments in the experiment, which were CK (no fertilizer), N1 (N of 60 kg/hm2), N2 (N of 120 kg/hm2), N1P1 (P2O5 of 30 kg/hm2), N2P1 and N2P2 (P2O5 of 60 kg/hm2), N2P2K1 (K2O of 45 kg/hm2) and N2P2K2 (K2O of 90 kg/hm2). All treatments were applied with composted cow dung as the base fertilizer, and each season 50% of the straws were returned to the field. The content of organic matter, nitrogen, phosphorous and potassium in red soil paddy was observed continuously for ten years and their correlation was also analyzed. Under cow manure and straw return to field, organic matter content of different treatments was positively correlated to year. After ten years, organic matter content of surface soil rose by 2.5 g/kg averagely with an annual increase of 0.25 g/kg. Total nitrogen content and organic matter content of different treatments presented similar variation trend. Total nitrogen content rose by 0.35 g/kg averagely with an annual increase of 0.035 g/kg. Among all the treatments, N2P2K1 and N2P2K2 showed the biggest increase, which went up by 0.052 and 0.48 g/kg, respectively. Phosphorous-free treatments (CK, N1, N2) had steady phosphorous content with irregular changes of different years. Total phosphorous content of phosphorous treatments increased year by year. Total phosphorous content of N1P1 and N2P1 rose by 0.008 g/kg every year. The increment range of total phosphorous content of N2P2, N2P2K1 and N2P2K2 was 0.012 -0.013 g/kg annually. Available phosphorous content varied vastly among different treatments. Available phosphorous content of organic fertilizer treatments basically remained stable with irregular changes of different years. Available phosphorous content of organic fertilizer with phosphate fertilizer treatments rose year by year. Available phosphorous content of N1P1 and N2P1 rose approximately by 0.8 mg/kg. Available phosphorous content of N2P2, N2P2K1 and N2P2K2 rose approximately by 1.4 -1.6 mg/kg annually. Potassium fertilizer amount greatly affected total potassium content. Total potassium content of no-potassium treatments (CK, N1, N2, N1P1, N2P1 and N2P2) remained the same. Total potassium content of N2P2K markedly increased year by year, which was 0.014 g/kg annually. Rapid available potassium content of no-potassium treatments (CK, N1, N2, N1P1, N2P1 and N2P2) showed a decreasing trend. With phosphate fertilizer, rapid available potassium content of N2P2K1 and N2P2K2 remained the same or increased year by year. The change trend of slow available potassium content and rapid available potassium content resembled. Rational allocation of organic fertilizer, nitrogenous fertilizer, phosphate fertilizer and potassium fertilizer can significantly improve soil fertility and economic benefits. Balanced fertilization is an effective measure for soil fertility improvement as it's shown that nutrients of surface soil accumulate annually.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金financially supported by the National Key Research and Development Program of China(2022YFD190160304)Natural Science Foundation of Sichuan Province(2022NSFSC0013)+1 种基金Sichuan Maize Innovation Team Construction Project(SCCXTD-2022-02)National Key Research and Development Program of China(2018YFD0301206)。
文摘Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.
基金supported by the Key Research and Development Project of Hubei Province,China(No.2021BCA111)。
文摘The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.
基金supported by the National Key Research and Development Program of China(2022YFC2702900 and 2021YFC2701103)National Natural Science Foundation of China(82171654)。
文摘Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Guizhou Province(S202310664011)Natural Science Research Project of Guizhou Provincial Department of Education(QJJ[2022]067,QJJ[2023]043)Teaching Content and Curriculum System Reform Project of Colleges and Universities in Guizhou Province(GZJG20220776)。
文摘In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
基金y the National Natural Science Foundation of China(Grant No.32102466)the Major Scientific Innovation Project of Shandong Province(Grant No.2022CXGC020708).
文摘Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.
文摘Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems.
文摘This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.
基金Supported by the grands from National Sugarcane Industry Technology System(CARS-20-3-5)Science and Technology Development Foundation of Guangxi Academy of Agricultural Science(GNK 2015JZ31 GNK 2013JZ13,200905Zji)~~
文摘[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.
基金Supported by Special Fund from Ministry of Agriculture for Scientific Research(200903025-05)~~
文摘Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003016)Special Fund for Excellent Paper of Sichuan Academy of Agricultural Sciences (2010LWJJ-007)~~
文摘[Objective] The study aimed to better understand the effect of different fertilizer treatments on micro-morphological characteristics of a purple soil at the 0-20 cm topsoil in a long-term fertilizer experiment. [Method] Soil micro-morphology was observed and analyzed under a single polarizing microscope. [Result] For the CK (no fertilizer) treatment, soil structure was dense with little porosity developed. Its soil microstructure was poor, sandy fabric-granular fabric. After continuously applied chemical fertilizers only for more than two decades, the soil particles did not evolve into soil structures and formed little porosity. The microstructures of soil in N, NP and NPK treatments were porphyroskelic fabric-fine sandy granular fabric, better than that of the soil in CK treatment. Adding manure obviously improved the quantity of groundmass and endowed the soil a loose structure and plenty porosity, enriched animal and plant residues, and well-formed iron-manganese nodules and humus ma- terials, all resulting in better micro-aggregates development. The type of soil microstructures in MNPK treatment was pectized-compacted takyric fabric-intertextic fabric, the best among all the treatments. [Conclusion] Combined application of both or- ganic and inorganic fertilizers can significantly improve the structure of the purple soil, enhance soil fertility and achieve soil sustainable development.
基金Supported by International Plant Nutrition Institute,China Program~~
文摘[Objective] China is the world's largest fertilizer consumer. Fertilizer plays an important role in maintaining China's food security. Along with population and economic growth, overuse of fertilizers has caused serious environmental problems, such as soil acidification, decline in soil organic carbon, and agricultural non-point source pollution. This study aimed to analyze the factors influencing farmers" decision making on fertilizer use, and provide policy recommendations on ways to affect fertilization. [Method] An econometric model reflecting fertilization of rural households was estimated from a survey distributed to 1 043 households randomly selected from 19 provinces in China. [Result] Results of the study showed that education years of fertilizer decision maker, fertilizer quality, organic fertilizer application, fertilizer price, and agricultural product price had significant effects on the fertilizer application rate at 1% level. Soil nutrient affected the fertilizer application rate at 10% level. [Conclusion] Policies aimed at improving the reasonable use of fertilizer should focus on the regulation of chemical fertilizer price, foundation of the organic-inorganic fertilizer system, soil testing, formulated fertilization, and agricultural extension service.
文摘Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.
基金Supported by Preliminary Special Foundation of Major State Basic Research Program(973)(2001CCB00800)Scientific and Technological Projects of Henan Province(072102170004)Key Public Welfare Research Project in Henan Province(081100911500)~~
文摘[Objective] The research aimed to study the effects of fertilization on soil remediation.[Method]Pot fertilizer tests were conducted to remedy the soils which had off-balanced in nutrients resulted by long-term unreasonable fertilization.[Result]The results showed that applying NPK fertilizers with manure was the best method to restore the soil nutrients and increase soil fertility and crop yield;NPK and NP fertilizers could balance soil fertility and increase crop yields,the effects were the same and next to MNPK.Phosphate and nitrogen respectively had the similar restoring effect with NPK fertilizers on soil from long-term NK and PK treatments.[Conclusion]Crops in soil with long-term applying NPK fertilizers had strong dependence on fertilizers.The yields of corn and wheat decreased by 78.6% and 52.8% respectively after stopping applying fertilizers.Meanwhile,The yields of corn and wheat increased by 112% and 182% respectively after stopping applying fertilizers in NK treatment as well as 15.1% and 59% in PK treatment.Manure had strong and last effect on increasing yield.
基金Supported by the Key Program for Agriculture of Qiqihar City(NYGG-201524)~~
文摘[Objective] The aim was to explore the effect of cumulus cells on the in vitro fertilization of in vitro matured bovine oocytes. [Method] The in vitro matured oocytes were divided into three groups of cumulus cells removal, partial removal and no removal. [Result] In the co-culture with cumulus cells, the oocytes of the removal group had higher cleavage rate and blastocyst rate (74.4%±4.1, 53.7%±5.1) than those of the no removal group (72.7%±5.1, 52.4%±3.5), but the difference was not significant (P〉0.05), while both groups had better performances than the re- moval group (39.6%±4.5, 18.8%±4.6) with the difference reaching the significant level (P〈0.05). All the three groups showed significant difference with the control. The combination of cumulus cells and melatonin achieved the best effects as the cleavage rate and blastocyst rate of the partial removal group (79.8%±3.7, 56.5%±5.1) were better than those of the no removal group (78.2%±2.6, 55.8%±4.6), and the difference was not significant, while both group had better performances than the removal group (48.3%±5.5, 22.7%±4.3) and the control group with the differences reaching the significant level (P〈0.05). [Conclusion] The study provided technical support for the production of dairy cows and beef cattle.
基金Supported by Crop Breeding Key Program of the 12th Five-year Plan(No.2011yzgg-1302-01)Sichuan Academy of Agricultural Sciences(2011LWJJ-008)+1 种基金Sichuan Financial Genetic Engineering(2011JYGC10-027-02)Special Fund of Modern Agricultural Industry Technology System Construction(No.CARS-22)~~
文摘This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves, with mulberry trees in spring and autumn as the material and as per "3414" experimental design. The results showed that the qualities and active substance content of mulberry leaves changed from increasing to decreasing with its development; crude protein and solu-ble sugar achieved the peak on August 20; total flavonoid and 1-deoxynojirimycin was the highest on May 15. Fertilizations with N, P and K fertilizers at different amounts had significant effects on quality of mulberry leaf and content of active substances. Specifically, as fertilizer amount increased, the content of active sub- stances grew dramatically and achieved the highest at level 2 (X^2X=X~_). Based on fertilizer effect functions of objective yield, the recommended amounts of N, P and K fertilizers based on crude protein, soluble sugar, flavonoid content and DNJ in test sites were 718.46, 220.11 and 305.23 kg/hm2, when the highest of crude protein in mulberry leaf was 1 813.83 kg/hm2. When N, P and K fertilizers were recommended at 666.54, 204.41 and 243.18 kg/hm2, soluble sugar in mulberry leaf achieved the peak at 1 042.65 kg/hm2. When N, P and K fertilizers were at 675.96, 326.49 and 462.90 kg/hm2, flavonoid content achieved the maximum at 147.90 kg/hm2. When N, P and K fertilizers were at 720.9, 225.11 and 323.63 kg/hm2, DNJ content was the highest at 13.55 kg/hm2.
文摘This review gives a brief retrospect to the development on in vitro fertilization (IVF) of angiosperms in China. During the last decade Chinese scientists put great enthusiasm and efforts on IVF system construction and built up notable contributions to the flourish of this field. Keeping pace with international development and participating international cooperation in the field of IVF, Chinese scientists have now focused on the investigation of basic mechanism relevant to possible gamete interaction, egg cell activation and early embryogenesis by IVF. In vitro manipulation techniques are combined with cytological and molecular biological approaches to unveil the double fertilization mysteries.
基金Supported by the Natural Science Foundation of Guagnxi(2015GXNSFBA139098)the Special Fund for Science and Technology of the Ministry of Agriculture of China(201203030-07-02)+1 种基金the Fund Program of Guangxi Academy of Agricultural Sciences(2015YT30,2014JZ18,2013YF06)the Science and Technology Planning Project of Qingxiu District,Nanjing(2012N15)~~
文摘The change rules of the fertility of red soil paddy under the long-term different fertilization were investigated, and the reasonable fertilization mode to improve the fertility of red soil paddy was discussed. There were eight treatments in the experiment, which were CK (no fertilizer), N1 (N of 60 kg/hm2), N2 (N of 120 kg/hm2), N1P1 (P2O5 of 30 kg/hm2), N2P1 and N2P2 (P2O5 of 60 kg/hm2), N2P2K1 (K2O of 45 kg/hm2) and N2P2K2 (K2O of 90 kg/hm2). All treatments were applied with composted cow dung as the base fertilizer, and each season 50% of the straws were returned to the field. The content of organic matter, nitrogen, phosphorous and potassium in red soil paddy was observed continuously for ten years and their correlation was also analyzed. Under cow manure and straw return to field, organic matter content of different treatments was positively correlated to year. After ten years, organic matter content of surface soil rose by 2.5 g/kg averagely with an annual increase of 0.25 g/kg. Total nitrogen content and organic matter content of different treatments presented similar variation trend. Total nitrogen content rose by 0.35 g/kg averagely with an annual increase of 0.035 g/kg. Among all the treatments, N2P2K1 and N2P2K2 showed the biggest increase, which went up by 0.052 and 0.48 g/kg, respectively. Phosphorous-free treatments (CK, N1, N2) had steady phosphorous content with irregular changes of different years. Total phosphorous content of phosphorous treatments increased year by year. Total phosphorous content of N1P1 and N2P1 rose by 0.008 g/kg every year. The increment range of total phosphorous content of N2P2, N2P2K1 and N2P2K2 was 0.012 -0.013 g/kg annually. Available phosphorous content varied vastly among different treatments. Available phosphorous content of organic fertilizer treatments basically remained stable with irregular changes of different years. Available phosphorous content of organic fertilizer with phosphate fertilizer treatments rose year by year. Available phosphorous content of N1P1 and N2P1 rose approximately by 0.8 mg/kg. Available phosphorous content of N2P2, N2P2K1 and N2P2K2 rose approximately by 1.4 -1.6 mg/kg annually. Potassium fertilizer amount greatly affected total potassium content. Total potassium content of no-potassium treatments (CK, N1, N2, N1P1, N2P1 and N2P2) remained the same. Total potassium content of N2P2K markedly increased year by year, which was 0.014 g/kg annually. Rapid available potassium content of no-potassium treatments (CK, N1, N2, N1P1, N2P1 and N2P2) showed a decreasing trend. With phosphate fertilizer, rapid available potassium content of N2P2K1 and N2P2K2 remained the same or increased year by year. The change trend of slow available potassium content and rapid available potassium content resembled. Rational allocation of organic fertilizer, nitrogenous fertilizer, phosphate fertilizer and potassium fertilizer can significantly improve soil fertility and economic benefits. Balanced fertilization is an effective measure for soil fertility improvement as it's shown that nutrients of surface soil accumulate annually.