The impacts of elevation on fires in a ceiling vented compartment were investigated experimentally. The flame behavior of elevated fires was recorded. Various parameters including the fuel mass loss rate, the light ex...The impacts of elevation on fires in a ceiling vented compartment were investigated experimentally. The flame behavior of elevated fires was recorded. Various parameters including the fuel mass loss rate, the light extinction coefficient, the oxygen concentration and the gas temperature were measured. Results indicated that the variations of the flame behavior were consistent with that of the fuel mass loss rate. The fire location significantly impacted the light extinction coefficient, the oxygen concentration and the gas temperature, which all showed distinct stratification phenomena. For a higher elevated f'we, the average fuel loss rate and the overall light extinction co- efficient were smaller, the oxygen concentration was higher and the gas temperature was lower. In addition, the smoke descending was slower. From the perspective of those parameters the fire was less hazardous if the fire was elevated higher, which was totally different from the elevated fires in closed compartments.展开更多
Correlations of fire-induced temperature have been reviewed and revisited.The impact of XY factors,i.e.,the relative locations of the fire source and vent,on temperature models of ceiling-vented compartments could be ...Correlations of fire-induced temperature have been reviewed and revisited.The impact of XY factors,i.e.,the relative locations of the fire source and vent,on temperature models of ceiling-vented compartments could be reflected by the exponents of the two dimensionless terms which represent the ratio of the total energy to energy released through the ceiling vent,and the ratio of the energy lost through the walls to the energy released through the ceiling vent.For fires not located directly below the ceiling vent,the temperature rise was proportional to two thirds of the power of the heat release rate,while for fires immediately beneath this vent,the temperature rise was proportional to four thirds the power of the heat release rate,and was inversely proportional to one sixth the power of the ceiling vent size.展开更多
基金supported by National Natural Science Foundation of China (Project no. 50976109 and no. 51206157)the Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20123402110048)a Grant from CityU (Project No. 7002577)
文摘The impacts of elevation on fires in a ceiling vented compartment were investigated experimentally. The flame behavior of elevated fires was recorded. Various parameters including the fuel mass loss rate, the light extinction coefficient, the oxygen concentration and the gas temperature were measured. Results indicated that the variations of the flame behavior were consistent with that of the fuel mass loss rate. The fire location significantly impacted the light extinction coefficient, the oxygen concentration and the gas temperature, which all showed distinct stratification phenomena. For a higher elevated f'we, the average fuel loss rate and the overall light extinction co- efficient were smaller, the oxygen concentration was higher and the gas temperature was lower. In addition, the smoke descending was slower. From the perspective of those parameters the fire was less hazardous if the fire was elevated higher, which was totally different from the elevated fires in closed compartments.
基金supported by the Anhui Provincial Natural Science Foundation(1408085MKL94)
文摘Correlations of fire-induced temperature have been reviewed and revisited.The impact of XY factors,i.e.,the relative locations of the fire source and vent,on temperature models of ceiling-vented compartments could be reflected by the exponents of the two dimensionless terms which represent the ratio of the total energy to energy released through the ceiling vent,and the ratio of the energy lost through the walls to the energy released through the ceiling vent.For fires not located directly below the ceiling vent,the temperature rise was proportional to two thirds of the power of the heat release rate,while for fires immediately beneath this vent,the temperature rise was proportional to four thirds the power of the heat release rate,and was inversely proportional to one sixth the power of the ceiling vent size.