Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen...Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.展开更多
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie...BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.展开更多
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra...Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.展开更多
Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance tre...Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.展开更多
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser captu...Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy.展开更多
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of ...Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.展开更多
Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,...Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.展开更多
[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavo...[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.展开更多
Circular RNAs(circRNAs)play a vital role in diabetic peripheral neuropathy.However,their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood.Here,we per...Circular RNAs(circRNAs)play a vital role in diabetic peripheral neuropathy.However,their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood.Here,we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls.Protein profiling revealed 265 differentially expressed proteins in the diabetic peripheral neuropathy group.Gene Ontology indicated that differentially expressed proteins were mainly enriched in myelination and mitochondrial oxidative phosphorylation.A real-time polymerase chain reaction assay performed to validate the circRNA sequencing results yielded 11 differentially expressed circRNAs.circ_0002538 was markedly downregulated in patients with diabetic peripheral neuropathy.Further in vitro experiments showed that overexpression of circ_0002538 promoted the migration of Schwann cells by upregulating plasmolipin(PLLP)expression.Moreover,overexpression of circ_0002538 in the sciatic nerve in a streptozotocin-induced mouse model of diabetic peripheral neuropathy alleviated demyelination and improved sciatic nerve function.The results of a mechanistic experiment showed that circ_0002538 promotes PLLP expression by sponging miR-138-5p,while a lack of circ_0002538 led to a PLLP deficiency that further suppressed Schwann cell migration.These findings suggest that the circ_0002538/miR-138-5p/PLLP axis can promote the migration of Schwann cells in diabetic peripheral neuropathy patients,improving myelin sheath structure and nerve function.Thus,this axis is a potential target for therapeutic treatment of diabetic peripheral neuropathy.展开更多
The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can ...The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.展开更多
The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and ...The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and osteogenic lineages.In this study,exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls(NOR)and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs.Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro,while inhibition of miR-103-3p showed the opposite results in NOR-MSCs.Thus,the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs,significantly impacting MDS-MSCs differentiation.The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while weakening lipid differentiation,thereby providing possible target for the treatment of MDS pathogenesis.展开更多
Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layer...Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.展开更多
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM...BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia.展开更多
Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target...Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung canc...Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.展开更多
Objective:Chronic kidney disease(CKD)is a progressive disorder characterized by intricate structural and functional alterations in the kidneys,attributable to diverse causative factors.Notably,the therapeutic promise ...Objective:Chronic kidney disease(CKD)is a progressive disorder characterized by intricate structural and functional alterations in the kidneys,attributable to diverse causative factors.Notably,the therapeutic promise of miR-145-5p in addressing renal pathologies has been discerned.This investigation seeks to elucidate the functional role of miR-145-5p in injured kidneys by subjecting human glomerular mesangial cells(HGMCs)to stimulation with Angiotensin II(AngII).Materials and Methods:Cellular viability and the levels of inflammatory mediators were evaluated utilizing Cell Counting Kit-8(CCK-8),quantitative real-time polymerase chain reaction(qRT-PCR),and western blot methodologies,both in the presence of AngII incubation and in scenarios of miR-145p overexpression and downregulation.Furthermore,the cell cycle dynamics were elucidated through Fluorescence-activated Cell Sorting(FACS)analysis.Results:AngII incubation induced an upregulation of miR-145-5p and inflammatory factors including Intercellular Adhesion Molecule 1(ICAM-1),Interleukin 6(IL-6),Interleukin 8(IL-8),and Interleukin 1β(IL-1β).Additionally,it elevated the expression of Cyclin A2,Cyclin D1,and the G2/M cell cycle ratio.Conversely,inhibition of miR-145-5p heightened the levels of inflammatory factors and cell cycle regulators induced by AngII incubation.Reduced expression of miR-145-5p correlated with a downregulation of Interleukin 10(IL-10)expression,concurrently promoting HGMC proliferation under AngII stimulation.Moreover,ectopic miR-145-5p expression demonstrated a reduction in inflammatory factors,cell cyclin regulators,G2/M cell cycle ratio,and overall proliferation.Conclusion:MiR-145-5p exhibited inhibitory effects on the inflammatory response and proliferation induced by Angiotensin II in HGMCs,showcasing its potential as a therapeutic avenue for the treatment of kidney injury.展开更多
Objective Acute myeloid leukemia(AML)is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion.Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis.In t...Objective Acute myeloid leukemia(AML)is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion.Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis.In this study,we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition.Methods Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls.A systematic analysis of clinical characteristics and prognostic factors was also conducted.Cell growth was assessed using the Cell Counting Kit-8(CCK-8)assay,and apoptosis and cell cycle progression were evaluated by flow cytometry.Moreover,RNA pull-down was performed to identify target microRNAs,and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets.Results Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival(OS)(hazard ratio:2.357;95%confidence interval 1.258–4.415).The circ_0012152 knockdown reduced cell growth,increased apoptosis,and inhibited cell cycle progression in AML cell lines.RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152.Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors.We suggested that miR-652-3p targeted SOX4,as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells.Conclusion Circ_0012152 is an independent poor prognostic factor for OS in AML,and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.展开更多
Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-...Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.展开更多
Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mech...Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX)and 81671189(to RX)。
文摘Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.
基金Supported by the National Natural Science Foundation of China,No.81900743Heilongjiang Province Outstanding Young Medical Talents Training Grant Project,China,No.HYD2020YQ0007.
文摘BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.
基金supported by the National Natural Science Foundation of China(32272849)the National Key R&D Program of China(2021YFF1000602)the earmarked fund for CARS-35-PIG。
文摘Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.
文摘Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
基金supported by the National Natural Science Foundation of China[Grant Number:81972803]。
文摘Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy.
文摘Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.
基金Changshu Science and Technology Plan(Social Development)Project(No.CS202130)Key Project of Changshu No.2 People’s Hospital(No.CSEY2021007)。
文摘Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.
基金Supported by Youth Fund Project of Zhaoqing University(QZ202235)Zhaoqing Science and Technology Plan Project(2022040311011).
文摘[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.
基金supported by the National Natural Science Foundation of China,Nos.81772094(to ZBC),81974289(to ZBC)the Key Research and Development Program of Hubei Province,No.2020BCB031(to ZBC)Natural Science Foundation of Hubei Province,No.2020CFB433(to YTL).
文摘Circular RNAs(circRNAs)play a vital role in diabetic peripheral neuropathy.However,their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood.Here,we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls.Protein profiling revealed 265 differentially expressed proteins in the diabetic peripheral neuropathy group.Gene Ontology indicated that differentially expressed proteins were mainly enriched in myelination and mitochondrial oxidative phosphorylation.A real-time polymerase chain reaction assay performed to validate the circRNA sequencing results yielded 11 differentially expressed circRNAs.circ_0002538 was markedly downregulated in patients with diabetic peripheral neuropathy.Further in vitro experiments showed that overexpression of circ_0002538 promoted the migration of Schwann cells by upregulating plasmolipin(PLLP)expression.Moreover,overexpression of circ_0002538 in the sciatic nerve in a streptozotocin-induced mouse model of diabetic peripheral neuropathy alleviated demyelination and improved sciatic nerve function.The results of a mechanistic experiment showed that circ_0002538 promotes PLLP expression by sponging miR-138-5p,while a lack of circ_0002538 led to a PLLP deficiency that further suppressed Schwann cell migration.These findings suggest that the circ_0002538/miR-138-5p/PLLP axis can promote the migration of Schwann cells in diabetic peripheral neuropathy patients,improving myelin sheath structure and nerve function.Thus,this axis is a potential target for therapeutic treatment of diabetic peripheral neuropathy.
文摘The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.
基金This work was supported by The Nature Science Foundation of China(Nos.82070176,82070128,81900132)the Medical Science and Technology Research Fund of Guangdong Province(No.A2020585).
文摘The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and osteogenic lineages.In this study,exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls(NOR)and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs.Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro,while inhibition of miR-103-3p showed the opposite results in NOR-MSCs.Thus,the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs,significantly impacting MDS-MSCs differentiation.The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while weakening lipid differentiation,thereby providing possible target for the treatment of MDS pathogenesis.
基金supported by the National Key R&D Program of China(2018YFB1500103)the National Natural Science Foundation of China(62104082)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228)the Science and Technology Program of Guangzhou(202201010458)。
文摘Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.
基金Supported by Sailing Program of Naval Medical University,Program of Shanghai Hongkou District Health Commission,No.2202-27Special Funds for Activating Scientific Research of Shanghai Fourth People’s Hospital,No.sykyqd05801.
文摘BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC1002804 and 2016YFC1000600)the National Natural Science Foundation of China(Nos.81771618 and 81971356)the Fundamental Research Funds for the Central Universities(No.2042023kf0028).
文摘Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
文摘Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.
基金This work was supported by Nantong Science and Technology Project(MS22022012,MS12021039,MS12018020,MS12018041,JC2020040)Jiangsu Provincial Laboratory Animal Association(DWXH202116)+1 种基金the Doctoral Scientific Research Foundation of Nantong University(135420505015,135422505037)National College Students’Innovation and Entrepreneurship Training Program(202110304036Z).
文摘Objective:Chronic kidney disease(CKD)is a progressive disorder characterized by intricate structural and functional alterations in the kidneys,attributable to diverse causative factors.Notably,the therapeutic promise of miR-145-5p in addressing renal pathologies has been discerned.This investigation seeks to elucidate the functional role of miR-145-5p in injured kidneys by subjecting human glomerular mesangial cells(HGMCs)to stimulation with Angiotensin II(AngII).Materials and Methods:Cellular viability and the levels of inflammatory mediators were evaluated utilizing Cell Counting Kit-8(CCK-8),quantitative real-time polymerase chain reaction(qRT-PCR),and western blot methodologies,both in the presence of AngII incubation and in scenarios of miR-145p overexpression and downregulation.Furthermore,the cell cycle dynamics were elucidated through Fluorescence-activated Cell Sorting(FACS)analysis.Results:AngII incubation induced an upregulation of miR-145-5p and inflammatory factors including Intercellular Adhesion Molecule 1(ICAM-1),Interleukin 6(IL-6),Interleukin 8(IL-8),and Interleukin 1β(IL-1β).Additionally,it elevated the expression of Cyclin A2,Cyclin D1,and the G2/M cell cycle ratio.Conversely,inhibition of miR-145-5p heightened the levels of inflammatory factors and cell cycle regulators induced by AngII incubation.Reduced expression of miR-145-5p correlated with a downregulation of Interleukin 10(IL-10)expression,concurrently promoting HGMC proliferation under AngII stimulation.Moreover,ectopic miR-145-5p expression demonstrated a reduction in inflammatory factors,cell cyclin regulators,G2/M cell cycle ratio,and overall proliferation.Conclusion:MiR-145-5p exhibited inhibitory effects on the inflammatory response and proliferation induced by Angiotensin II in HGMCs,showcasing its potential as a therapeutic avenue for the treatment of kidney injury.
基金supported by grants from the Natural Science Foundation of Zhejiang Province(No.LY20H080001)Medical and Health Science and Technology Projects of Zhejiang Province(No.2021KY997,No.2022KY306,No.2022KY316,No.2023KY263).
文摘Objective Acute myeloid leukemia(AML)is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion.Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis.In this study,we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition.Methods Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls.A systematic analysis of clinical characteristics and prognostic factors was also conducted.Cell growth was assessed using the Cell Counting Kit-8(CCK-8)assay,and apoptosis and cell cycle progression were evaluated by flow cytometry.Moreover,RNA pull-down was performed to identify target microRNAs,and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets.Results Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival(OS)(hazard ratio:2.357;95%confidence interval 1.258–4.415).The circ_0012152 knockdown reduced cell growth,increased apoptosis,and inhibited cell cycle progression in AML cell lines.RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152.Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors.We suggested that miR-652-3p targeted SOX4,as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells.Conclusion Circ_0012152 is an independent poor prognostic factor for OS in AML,and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.
基金supported by National Natural Science Foundation of China(No:30570627).
文摘Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.
基金the National Natural Science Foundation of China (No. 30570627)
文摘Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.