期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hopf Amplification Originated from the Force-Gating Channels of Auditory Hair Cells 被引量:1
1
作者 田霖 张艳平 龙长才 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期146-150,共5页
The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are ... The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are suggested to originate from the Hopf amplification within the cochlea, while the mechanism underlying the Hopf amplification remains elusive. According to the experimental results of force-gating channel operation in hair cells, through a theoretic model, this work reveals a velocity-dependent open probability of force-gating channels in auditory hair cells, and a velocity-dependent active force produced by the force-gating channel operating, which makes sensors hear typical Hopf vibrators with nonlinear hearing phenomena. 展开更多
关键词 of it on for in Hopf amplification Originated from the Force-Gating Channels of Auditory Hair cells is from that
下载PDF
Neurodynamics analysis of cochlear hair cell activity 被引量:1
2
作者 Weifeng Rong Rubin Wang +1 位作者 Jianhai Zhang Wanzeng Konga 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期8-15,共8页
There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energ... There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energy consumption of the hair cells in the process of the electromotility movement,as well as the neurodynamic mechanism that produced this effect.This makes previous studies unable to fully clarify the function of outer hair cells(OHCs)and the mechanism of sound amplification.To this end,we introduce the gate conductance characteristics of the hair cells in the mechanical process of increasing frequency selectivity.The research finds that the low attenuation of OHCs membrane potential and the high gain in OHC power and energy consumption caused that OHC amplification is driven by electromotility.The research results show that the amplification of the OHCs is driven by low attenuation of membrane potential and high gain of power and energy consumption.This conclusion profoundly reveals the physiological mechanism of the electromotility movement. 展开更多
关键词 Hair cells Sound frequencies Membrane potential POWER Outer hair cell amplification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部