The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is be...Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner.展开更多
Breakdown of blood-brain barrier,formed mainly by brain microvascular endothelial cells(BMECs),represents the major cause of mortality during early phases of ischemic strokes.Hence,discovery of novel agents that can e...Breakdown of blood-brain barrier,formed mainly by brain microvascular endothelial cells(BMECs),represents the major cause of mortality during early phases of ischemic strokes.Hence,discovery of novel agents that can effectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine.Although endothelial progenitor cells(EPCs)represent one such agents,their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells(OECs)as a result.Functional analyses of these cells,in the present study,demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matrigel,prominent endothelial cell and angiogenesis markers,respectively.Further analyses by flow cytometry demonstrated that OECs expressed specific markers for sternness(CD34),immaturity(CD133)and endothelial cells(CD31)but not for hematopoietic cells(CD45).Like BMECs,OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes,suggesting their capacity to form tight junctions.Ischemic injury mimicked by concurrent deprivation of oxygen and glucose(4 hours)or deprivation of oxygen and glucose followed by reperfusion(20 hours)affected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux,respectively.Wound scratch assays comparing the vasculoreparative capacity of cells revealed that,compared to BMECs,OECs possessed a greater proliferative and directional migratory capacity.In a triple culture model of BBB established with astrocytes,pericytes and BMEC,exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions.Taken together,these data demonstrate that OECs may effectively home to the site of vascular injury and repair the damage to maintain(neuro)vascular homeostasis during or after a cerebral ischemic injury.展开更多
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communic...In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduc- tion pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regu- lation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.展开更多
Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) path...Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.展开更多
Myelin-associated glycoprotein(MAG) inhibits the growth of neurites from nerve cells. Extraction and purification of MAG require complex operations; therefore, we attempted to determine whether commercially availabl...Myelin-associated glycoprotein(MAG) inhibits the growth of neurites from nerve cells. Extraction and purification of MAG require complex operations; therefore, we attempted to determine whether commercially available MAG-Fc can replace endogenous MAG for research purposes. Immunofluorescence using specific antibodies against MAG, Nogo receptor(NgR) and paired immunoglobulin-like receptor B(PirB) was used to determine whether MAG-Fc can be endocytosed by neuro-2a cells. In addition, neurite outgrowth of neuro-2a cells treated with different doses of MAG-Fc was evaluated. Enzyme linked immunosorbent assays were used to measure RhoA activity. Western blot assays were conducted to assess Rho-associated protein kinase(ROCK) phosphorylation. Neuro-2a cells expressed NgR and PirB, and MAG-Fc could be endocytosed by binding to NgR and PirB. This activated intracellular signaling pathways to increase RhoA activity and ROCK phosphorylation, ultimately inhibiting neurite outgrowth. These findings not only verify that MAG-Fc can inhibit the growth of neural neurites by activating RhoA signaling pathways, similarly to endogenous MAG, but also clearly demonstrate that commercial MAG-Fc is suitable for experimental studies of neurite outgrowth.展开更多
Background: We have been searching effective compounds that can stimulate the growth and differentiation of nerve cells. We found previously that fulleren derivatives enhanced induction of morphological differentiatio...Background: We have been searching effective compounds that can stimulate the growth and differentiation of nerve cells. We found previously that fulleren derivatives enhanced induction of morphological differentiation with neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. In the course of our further search for other effective compounds, we found the aged garlic extract (AGE) has the activity similar to fulleren. Methods: PC12 cells were used to examine the effectiveness of test compound. Results: AGE enhanced the stimulating effect of NGF to induce morphological differentiation with neurite outgrowth in PC12 cells. In order to examine the active constituents of AGE, it was fractionated into several components. The activity was mainly localized in the F1 fraction that contains low molecular weight polar compounds. S-Allymercaptocysteine (SAMC) is one of the sulfur components of AGE present in F1 fraction and found to exhibit the enhancing effect similar to AGE. Conclusion: AGE had the ability to induce morphological differentiation with neurite outgrowth in NGF-treated PC12 cell and SAMC was one of its active constituents.展开更多
Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal surv...Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal survival remain unclear.In the present study,we co-cultured adult Fischer rat retinas with primary peritoneal macrophages or zymosan-treated peritoneal macrophages for 7 days.Immunofluorescence analysis revealed that peritoneal macrophages reduced retinal ganglion cell survival and neurite outgrowth in the retinal explant compared with the control group.The addition of zymosan to peritoneal macrophages attenuated the survival and neurite outgrowth of retinal ganglion cells.Conditioned media from peritoneal macrophages also reduced retinal ganglion cell survival and neurite outgrowth.This result suggests that secretions from peritoneal macrophages mediate the inhibitory effects of these macrophages.In addition,increased inflammationand oxidation-related gene expression may be related to the enhanced retinal ganglion cell degeneration caused by zymosan activation.In summary,this study revealed that primary rat peritoneal macrophages attenuated retinal ganglion cell survival and neurite outgrowth,and that macrophage activation further aggravated retinal ganglion cell degeneration.This study was approved by the Animal Ethics Committee of the Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong,Shantou,Guangdong Province,China,on March 11,2014(approval no.EC20140311(2)-P01).展开更多
Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation...Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation.To address this issue,real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2 A cells.The results revealed that miR-124 and miR-9 were upregulated,while miR-125 b was downregulated in retinoic acid-treated Neuro-2 A cells.To identify the miRNA that may play a key role,miR-124 expression was regulated by transfection of miRNA mimics or inhibitors.Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth.Moreover,miR-124 overexpression alone caused Neuro-2 A cells to differentiate into neurons,and its inhibitor could block this effect.These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2 A cells.展开更多
Nerve growth factor(NGF) promotes axonal growth in PC12 cells primarily by regulating the RTK-RAS-MEK-ERK pathway. Panaxydol, a polyacetylene isolated from Panax notoginseng, can mimic the effects of NGF. Panaxydol ...Nerve growth factor(NGF) promotes axonal growth in PC12 cells primarily by regulating the RTK-RAS-MEK-ERK pathway. Panaxydol, a polyacetylene isolated from Panax notoginseng, can mimic the effects of NGF. Panaxydol promotes neurite outgrowth in PC12 cells, but its molecular mechanism remains unclear. Indeed, although alkynol compounds such as panaxydol can increase intracellular cyclic adenosine 3′,5′-monophosphate(cAMP) levels and the ERK inhibitor U0126 inhibits alkynol-induced axonal growth, how pathways downstream of cAMP activate ERK have not been investigated. This study observed the molecular mechanism of panaxydol-, NGF-and forskolin-induced PC12 cell axon growth using specific signaling pathway inhibitors. The results demonstrated that although the RTK inhibitor SU5416 obviously inhibited the growth-promoting effect of NGF, it could not inhibit the promoting effect of panaxydol on axonal growth of PC12 cells. The adenylate cyclase inhibitor SQ22536 and cAMP-dependent protein kinase inhibitor RpcAMPS could suppress the promoting effect of forskolin and panaxydol on axonal growth. The ERK inhibitor U0126 inhibited axonal growth induced by all three factors. However, the PKA inhibitor H89 inhibited the promoting effect of forskolin on axonal growth but could not suppress the promoting effect of panaxydol. A western blot assay was used to determine the effects of stimulating factors and inhibitors on ERK phosphorylation levels. The results revealed that NGF activates the ERK pathway through tyrosine receptors to induce axonal growth of PC12 cells. In contrast, panaxydol and forskolin increased cellular cAMP levels and were inhibited by adenylyl cyclase inhibitors. The protein kinase A inhibitor H89 completely inhibited forskolin-induced axonal outgrowth and ERK phosphorylation, but could not inhibit panaxydol-induced axonal growth and ERK phosphorylation. These results indicated that panaxydol promoted axonal growth of PC12 cells through different pathways downstream of cAMP. Considering that exchange protein directly activated by cAMP 1(Epac1) plays an important role in mediating cAMP signaling pathways, RNA interference experiments targeting the Epac1 gene were employed. The results verified that Epac1 could mediate the axonal growth signaling pathway induced by panaxydol. These findings suggest that compared with NGF and forskolin, panaxydol elicits axonal growth through the cAMP-Epac1-Rap1-MEK-ERK-CREB pathway, which is independent of PKA.展开更多
Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia...Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia mediate these beneficial effects are unknown. Neurotrophic factors can promote neuronal differentiation, survival and neurite extension. We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors. In the present study, we demonstrated that primary enteric glia cells release nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250, 100 and 50 pg/mL of culture medium respectively after 48 hours. The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth. We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons. Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis, the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors. Therefore, enteric glia secrete nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.展开更多
The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling conco...The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Math2 can also promote or suppress tumor growth.展开更多
Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was co...Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor(NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2(MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction(qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors(NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCsCM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls;however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed.展开更多
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
基金supported by a BBSRC CASE training studentship,No.BB/K011413/1(to KG)。
文摘Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner.
基金Part of this study has been supported by a grant to Dr Bayraktutan from The Dunhill Medical Trust(R459/0216)
文摘Breakdown of blood-brain barrier,formed mainly by brain microvascular endothelial cells(BMECs),represents the major cause of mortality during early phases of ischemic strokes.Hence,discovery of novel agents that can effectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine.Although endothelial progenitor cells(EPCs)represent one such agents,their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells(OECs)as a result.Functional analyses of these cells,in the present study,demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matrigel,prominent endothelial cell and angiogenesis markers,respectively.Further analyses by flow cytometry demonstrated that OECs expressed specific markers for sternness(CD34),immaturity(CD133)and endothelial cells(CD31)but not for hematopoietic cells(CD45).Like BMECs,OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes,suggesting their capacity to form tight junctions.Ischemic injury mimicked by concurrent deprivation of oxygen and glucose(4 hours)or deprivation of oxygen and glucose followed by reperfusion(20 hours)affected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux,respectively.Wound scratch assays comparing the vasculoreparative capacity of cells revealed that,compared to BMECs,OECs possessed a greater proliferative and directional migratory capacity.In a triple culture model of BBB established with astrocytes,pericytes and BMEC,exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions.Taken together,these data demonstrate that OECs may effectively home to the site of vascular injury and repair the damage to maintain(neuro)vascular homeostasis during or after a cerebral ischemic injury.
文摘In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduc- tion pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regu- lation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.
基金supported by the National Natural Science Foundation of China(General Program),No.30872602
文摘Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.
基金supported by the National Natural Science Foundation of China,No.81171178
文摘Myelin-associated glycoprotein(MAG) inhibits the growth of neurites from nerve cells. Extraction and purification of MAG require complex operations; therefore, we attempted to determine whether commercially available MAG-Fc can replace endogenous MAG for research purposes. Immunofluorescence using specific antibodies against MAG, Nogo receptor(NgR) and paired immunoglobulin-like receptor B(PirB) was used to determine whether MAG-Fc can be endocytosed by neuro-2a cells. In addition, neurite outgrowth of neuro-2a cells treated with different doses of MAG-Fc was evaluated. Enzyme linked immunosorbent assays were used to measure RhoA activity. Western blot assays were conducted to assess Rho-associated protein kinase(ROCK) phosphorylation. Neuro-2a cells expressed NgR and PirB, and MAG-Fc could be endocytosed by binding to NgR and PirB. This activated intracellular signaling pathways to increase RhoA activity and ROCK phosphorylation, ultimately inhibiting neurite outgrowth. These findings not only verify that MAG-Fc can inhibit the growth of neural neurites by activating RhoA signaling pathways, similarly to endogenous MAG, but also clearly demonstrate that commercial MAG-Fc is suitable for experimental studies of neurite outgrowth.
文摘Background: We have been searching effective compounds that can stimulate the growth and differentiation of nerve cells. We found previously that fulleren derivatives enhanced induction of morphological differentiation with neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. In the course of our further search for other effective compounds, we found the aged garlic extract (AGE) has the activity similar to fulleren. Methods: PC12 cells were used to examine the effectiveness of test compound. Results: AGE enhanced the stimulating effect of NGF to induce morphological differentiation with neurite outgrowth in PC12 cells. In order to examine the active constituents of AGE, it was fractionated into several components. The activity was mainly localized in the F1 fraction that contains low molecular weight polar compounds. S-Allymercaptocysteine (SAMC) is one of the sulfur components of AGE present in F1 fraction and found to exhibit the enhancing effect similar to AGE. Conclusion: AGE had the ability to induce morphological differentiation with neurite outgrowth in NGF-treated PC12 cell and SAMC was one of its active constituents.
基金supported by the National Natural Science Foundation of China,No.81570849(to LPC)the Natural Science Foundation of Guangdong Province of China,No.2020A1515010415(to LPC)+1 种基金the Special Fund for Chinese Medicine Development of Guangdong Province of China,No.20202089(to TKN)the Grant for Key Disciplinary Project of Clinical Medicine under the Guangdong High-Level University Development Program,No.002-18119101.
文摘Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal survival remain unclear.In the present study,we co-cultured adult Fischer rat retinas with primary peritoneal macrophages or zymosan-treated peritoneal macrophages for 7 days.Immunofluorescence analysis revealed that peritoneal macrophages reduced retinal ganglion cell survival and neurite outgrowth in the retinal explant compared with the control group.The addition of zymosan to peritoneal macrophages attenuated the survival and neurite outgrowth of retinal ganglion cells.Conditioned media from peritoneal macrophages also reduced retinal ganglion cell survival and neurite outgrowth.This result suggests that secretions from peritoneal macrophages mediate the inhibitory effects of these macrophages.In addition,increased inflammationand oxidation-related gene expression may be related to the enhanced retinal ganglion cell degeneration caused by zymosan activation.In summary,this study revealed that primary rat peritoneal macrophages attenuated retinal ganglion cell survival and neurite outgrowth,and that macrophage activation further aggravated retinal ganglion cell degeneration.This study was approved by the Animal Ethics Committee of the Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong,Shantou,Guangdong Province,China,on March 11,2014(approval no.EC20140311(2)-P01).
基金supported by the Natural Science Foundation of Shanghai of China,No.16ZR1410500(to SZD)
文摘Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation.To address this issue,real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2 A cells.The results revealed that miR-124 and miR-9 were upregulated,while miR-125 b was downregulated in retinoic acid-treated Neuro-2 A cells.To identify the miRNA that may play a key role,miR-124 expression was regulated by transfection of miRNA mimics or inhibitors.Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth.Moreover,miR-124 overexpression alone caused Neuro-2 A cells to differentiate into neurons,and its inhibitor could block this effect.These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2 A cells.
基金supported partly by the National Natural Science Foundation of China,No.30873057,81171245a grant from the Key Basic Project of Shanghai Municipal Science and Technology Commission of China,No.08JC1413600,11JC1406600
文摘Nerve growth factor(NGF) promotes axonal growth in PC12 cells primarily by regulating the RTK-RAS-MEK-ERK pathway. Panaxydol, a polyacetylene isolated from Panax notoginseng, can mimic the effects of NGF. Panaxydol promotes neurite outgrowth in PC12 cells, but its molecular mechanism remains unclear. Indeed, although alkynol compounds such as panaxydol can increase intracellular cyclic adenosine 3′,5′-monophosphate(cAMP) levels and the ERK inhibitor U0126 inhibits alkynol-induced axonal growth, how pathways downstream of cAMP activate ERK have not been investigated. This study observed the molecular mechanism of panaxydol-, NGF-and forskolin-induced PC12 cell axon growth using specific signaling pathway inhibitors. The results demonstrated that although the RTK inhibitor SU5416 obviously inhibited the growth-promoting effect of NGF, it could not inhibit the promoting effect of panaxydol on axonal growth of PC12 cells. The adenylate cyclase inhibitor SQ22536 and cAMP-dependent protein kinase inhibitor RpcAMPS could suppress the promoting effect of forskolin and panaxydol on axonal growth. The ERK inhibitor U0126 inhibited axonal growth induced by all three factors. However, the PKA inhibitor H89 inhibited the promoting effect of forskolin on axonal growth but could not suppress the promoting effect of panaxydol. A western blot assay was used to determine the effects of stimulating factors and inhibitors on ERK phosphorylation levels. The results revealed that NGF activates the ERK pathway through tyrosine receptors to induce axonal growth of PC12 cells. In contrast, panaxydol and forskolin increased cellular cAMP levels and were inhibited by adenylyl cyclase inhibitors. The protein kinase A inhibitor H89 completely inhibited forskolin-induced axonal outgrowth and ERK phosphorylation, but could not inhibit panaxydol-induced axonal growth and ERK phosphorylation. These results indicated that panaxydol promoted axonal growth of PC12 cells through different pathways downstream of cAMP. Considering that exchange protein directly activated by cAMP 1(Epac1) plays an important role in mediating cAMP signaling pathways, RNA interference experiments targeting the Epac1 gene were employed. The results verified that Epac1 could mediate the axonal growth signaling pathway induced by panaxydol. These findings suggest that compared with NGF and forskolin, panaxydol elicits axonal growth through the cAMP-Epac1-Rap1-MEK-ERK-CREB pathway, which is independent of PKA.
基金supported by Canadian Spinal Research Organization, No. #84831
文摘Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia mediate these beneficial effects are unknown. Neurotrophic factors can promote neuronal differentiation, survival and neurite extension. We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors. In the present study, we demonstrated that primary enteric glia cells release nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250, 100 and 50 pg/mL of culture medium respectively after 48 hours. The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth. We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons. Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis, the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors. Therefore, enteric glia secrete nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.
文摘The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Math2 can also promote or suppress tumor growth.
基金funded by Egyptian Cultural and Educational Bureau in London,Egyptian mission sector and ministry of higher education in Egypt(grant No.GAM2649)。
文摘Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor(NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2(MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction(qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors(NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCsCM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls;however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed.