Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the produc...Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.展开更多
BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimen...BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimental studies of hUC-MSCs have been published,these studies have mainly used fetal bovine serumcontaining cultures of hUC-MSCs;serum-free cultures generally avoid the shortcomings of serum-containing cultures and are not subject to ethical limitations,have a wide range of prospects for clinical application,and provide a basis or animal experimentation for clinical experiments.AIM To study the therapeutic effects of serum-free hUC-MSCs(N-hUCMSCs)in a mouse model of knee OA.METHODS Fifty-five male C57BL/6 mice were randomly divided into six groups:The blank control group,model control group,serum-containing hUC-MSCs(S-hUCMSC)group,N-hUCMSC group and hyaluronic acid(HA)group.After 9 weeks of modeling,the serum levels of interleukin(IL)-1β and IL-1 were determined.Hematoxylin-eosin staining was used to observe the cartilage tissue,and the Mankin score was determined.Immunohistochemistry and western blotting were used to determine the expression of collagen type II,matrix metalloproteinase(MMP)-1 and MMP-13.RESULTS The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 expression were significantly greater in the experimental group than in the blank control group(P<0.05).Collagen II expression in the experimental group was significantly lower than that in the blank control group(P<0.05).The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 levels the experimental group were lower than those in the model control group(P<0.05).Collagen II expression in the experimental group was significantly greater than that in the model control group(P<0.05).CONCLUSION N-hUCMSC treatment significantly alleviate the pathological damage caused by OA.The treatment effects of the ShUCMSC group and HA group were similar.展开更多
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is be...Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide.Sorafenib is still a recommended treatment for a large proportion of patients...BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide.Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC.Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.AIM To define the long non-codingRNA-microRNA-mRNA(lncRNA-miRNA-mRNA)predicted signatures related to selected hallmarks of cancer(apoptosis,autophagy,cell stress,cell dedifferentiation and invasiveness)in RNAseq studies using Sorafenib-treated HepG2 and SNU449 cells.Various available software analyses allowed us to establish the lncRNA-miRNA-mRNA regulatory axes following treatment in HepG2 and SNU449 cells.METHODS HepG2 and SNU449 cells were treated with Sorafenib(10μmol/L)for 24 hours.Total RNA,including small and long RNA,was extracted with a commercial miRNeasy kit.RNAseq was carried out for the identification of changes in lncRNA-miRNA-mRNA regulatory axes.RESULTS MALAT,THAP9-AS1 and SNGH17 appeared to coordinately regulate miR-374b-3p and miR-769-5p that led to upregulation of SMAD7,TIRARP,TFAP4 and FAXDC2 in HepG2 cells.SNHG12,EPB41 L4A-AS1,LINC01578,SNHG12 and GAS5 interacted with let-7b-3p,miR-195-5p and VEGFA in SNU449 cells.The axes MALAT1/hsamir-374b-3p/SMAD7 and MALAT1/hsa-mir-769-5p/TFAP4 were of high relevance for Sorafenib response in HepG2 cells,whereas PVT1/hsa-miR-195-5p/VEGFA was responsible for the differential response of SNU449 cells to Sorafenib treatment.CONCLUSION Critical lncRNAs acting as sponges of miRNA were identified that regulated mRNA expression,whose proteins mainly increased the antitumor effectiveness of the treatment(SMAD7,TIRARP,TFAP4,FAXDC2 and ADRB2).However,the broad regulatory axis leading to increased VEGFA expression may be related to the side effect of Sorafenib in SNU449 cells.展开更多
BACKGROUND Over the years,the numbers of treatment options for colorectal cancer(CRC)have increased,leading to notable improvements in the overall survival of CRC patients.Although therapy may initially yield positive...BACKGROUND Over the years,the numbers of treatment options for colorectal cancer(CRC)have increased,leading to notable improvements in the overall survival of CRC patients.Although therapy may initially yield positive results,the development of drug resistance can result in treatment failure and cancer recurrence.This resistance is often attributed to the presence of cancer stem cells(CSCs).These CSCs not only contribute to therapeutic resistance but also play crucial roles in the initiation and development of tumor metastasis.AIM To investigate the antitumor effects of SH-4-54,which are mediated by targeting CSCs relative to treatment outcomes.METHODS CSCs were enriched by culturing CRC cells in serum-free medium.Hallmarks of stemness and IL-6/JAK2/STAT3 signaling were detected by Western blotting.Indicators of CSC malignancy,including proliferation,invasion,and tumor formation,were measured.RESULTS In this study,we employed SH-4-54,which exhibits anticancer activity in solid tumors through targeting the SH2 domain of both the signal transducer and activator of transcription(STAT)3 and the STAT5,and evaluated its effects on stemness and chemoresistance in colorectal CSCs.As expected,SH-4-54 treatment inhibited the phosphorylation of STAT3(p-STAT3)and decreased the percentage of ALDH1A1-positive CRC cells.The addition of SH-4-54 dissociated colorectal spheroids and decreased the expression of stemness markers,including ALDH1A1,CD44 and Nanog.SH-4-54 treatment decreased IL-6/JAK2/STAT3 signaling by inhibiting p-STAT3 and thus inhibited spheroid formation by SW480 and LoVo cells.Moreover,SH-4-54 treatment inhibited indicators of malignancy,including cell proliferation,invasion,and tumor formation,in CSCs in vitro and in vivo.Notably,SH-4-54 treatment significantly increased chemosensitivity to oxaplatin.CONCLUSION Taken together,these results indicate that SH-4-54 is a promising molecule that exerts antitumor effects on colorectal CSCs by inhibiting STAT3 signaling.展开更多
Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus wa...Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.展开更多
AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector ...AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector pGEM-T. Then, the ns3 was subcloned into the vector pMSG to generate dexamethasone (DM)-inducible expression plasmid pMSG-ns3. CHO cells were transfected by pMSG-ns3 using calcium phosphate precipitation method and cultivated for 12 h-24 h. The transfected cells were induced with DM and the transient expression of NS3 protein was analyzed by ELISA and Western-blot methods.RESULTS After treated with 3×10-8mol/ L DM, the expression of NS3 was observed in the transfected CHO cells. A slightly higher level of NS3 was shown along with the time of DM treatment.CONCLUSION The inducible expressing vector pMSG-ns3 might be helpful for further studies of the characteristics of the ns3 gene in vivo.展开更多
Objective To investigate the protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. Methods Primary cultures of rPT cells undergoing exponential grow...Objective To investigate the protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. Methods Primary cultures of rPT cells undergoing exponential growth were incubated with 1.0 ug/mL quercetin and/or cadmium (2.5, 5.0 umol/L), in a serum-free medium at 37℃ at different time intervals. Commercial kits were used and flow cytometric analyses were performed on rPT cell cultures to assay apoptosis and oxidative stress. Results Exposure of rPT cells to cadmium acetate (2.5, 5.0 umol/L) induced a decrease in cell viability, caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, elevation of intracellular reactive oxygen species, malondialdehyde and calcium levels, depletion of mitochondrial membrane potential and intracellular glutathione, and inhibition of Na+, K+ -ATPase, Ca2+ -ATPase, glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activities were revealed during the cadmium exposure of rPT cells. However, simultaneous supplementation with 1 ug/mL quercetin protected rPT cells against cadmium-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function and elevating the intracellular antioxidants (non-enzymatic and enzymic) levels. Conclusion The present study has suggested that quercetin, as a widely distributed dietary antioxidant, contributes potentially to prevent cadmium-induced cytotoxicity in rPT cells.展开更多
The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by...The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ...展开更多
In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD ...In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD rats were isolated and cultured in vitro. The retinal neural cells in SD rats were cultured and the supernatants were collected to prepare conditioned medium. The cultured rMSCs were induced to differentiate by two steps. Immunofluorescence method and anti-nestin, anti-NeuN, anti-GFAP and anti-Thyl. 1 antibodies were used to identify the cells derived from the rMSCs. The results showed that the in vitro cultured rMSCs grew well and expanded quickly. After induction with two conditioned media, rMSCs was induced to differentiate into neural progenitor cells, then into retinal neural-like cells which were positive for nestin, NeuN, GFAP and Thyl. 1 detected by fluorescence method. The findings suggested that rMSCs could be culture and expanded in vitro, and induced to differentiate into retinal neural-like cells.展开更多
The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These syst...The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.展开更多
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. ...Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells.展开更多
The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong pho...The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong photon flux density [PFD, 2400 μEmol/(m 2·s)]. Sixteen fatty acids were identified by gas chromatography showing that AA was the dominant fatty acid (33%-41%) followed by linoleic acid (17%-21%). AA content was closely investigated with respect to total fatty acids (TFA), ash free dry weight (AFDW) of cell mass as well as total culture content. These parameters were influenced significantly in a similar manner by culture growth phase, i.e., slightly decreasing in the lag period, gradually increasing in the logarithmic phase, becoming maximal at the early stationary phase, starting to decrease at the late stationary phase, sharply dropping at the decline phase. The increase in AA per culture volume during the logarithmic phase was not only associated with the increase in AFDW but also connected with a corresponding increase in AA/TFA, TFA/AFDW as well as AA/AFDW. The sharp decrease in AA content of the culture during the decline phase was mainly due to the decrease in AA/TFA, TFA/AFDW and AA/AFDW, although AFDW declined only a small extent. Maximal AA concentration, obtained at the early stationary phase, was 900 mg/L culture volume, and the average daily net increase of AA during 9 days logarithmic growth was 1.7 g/(m 2·day). Therefore, harvesting prior to the decline phase in a batch culture, or at steady state in continuous culture mode seems best for high AA production. The latter possibility was also further confirmed by continuous culture with 5 gradients of harvesting rate.展开更多
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discov...Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.展开更多
Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the ...Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the method for the isolation and identification of human SSCs from testicular tissue, and to determine the culture conditions required to expand SSCs on human embryonic stem cell-derived fibroblast-like cells (hdFs). Large-scale cultures of SSCs were maintained on hdF feeder layers and expanded in the presence of a combination of cytokines and glial cell line-derived neurotrophic factor for at least 2 months. Cell surface marker analysis showed that SSCs retained high levels of alkaline phosphatase activity and stained strongly for anti-stage-specific embryonic antigen (SSEA)-1, OCT4 and CD49f. They also expressed the genes OCT4, SOX3 and STRA8 as detected by reverse transcription polymerase chain reaction (RT-PCR) analysis. These data clearly illustrate a novel approach for the growth of human SSCs using hdFs as feeder cells, potentially eliminating xenogeneic contaminants. This system provides a new opportunity for the study of the regulatory mechanism of the ‘niche' that governs SSC self-renewal, and will be a valuable source of SSCs for potential clinical applications.展开更多
Deacetoxy-13-oxo sinenxan A (1) was converted to 9a-hydroxy-13-oxo-2a, 5a, 10b-triacetoxy-4(20),11-taxadiene (2) and 10b-hydroxy-13-oxo-2a,5a,9a-triacetoxy- 4(20), 11- taxadiene (3) by Ginkgo cell suspension cultures ...Deacetoxy-13-oxo sinenxan A (1) was converted to 9a-hydroxy-13-oxo-2a, 5a, 10b-triacetoxy-4(20),11-taxadiene (2) and 10b-hydroxy-13-oxo-2a,5a,9a-triacetoxy- 4(20), 11- taxadiene (3) by Ginkgo cell suspension cultures in 45% and 15% yields, respectively.展开更多
Summary: In order to investigate whether cultured normal human lens epithelial cells (LEC) express transforming growth factor β (TGF-β), reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemic...Summary: In order to investigate whether cultured normal human lens epithelial cells (LEC) express transforming growth factor β (TGF-β), reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemical methods were used for detection of TGF-β mRNA and protein in cultured normal human LEC. The results showed that a single RT-PCR amplified product about 310bp was obtained, and the sequence was homologous to the known sequence. TGF-β immunostain was positive in the plasma of LEC. It was suggested that normal human LEC could produce TGF-β, and LEC could be affected by TGF-β through autocrine action.展开更多
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1A2C1008327)。
文摘Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.
基金Supported by the Cultivated by Outstanding Young Scientific and Technological Innovation and Entrepreneurship Talents in Nanning City,China,No.RC20210107and Self-Funded Research Project by Guangxi Health Commission,China,No.Z20191090.
文摘BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimental studies of hUC-MSCs have been published,these studies have mainly used fetal bovine serumcontaining cultures of hUC-MSCs;serum-free cultures generally avoid the shortcomings of serum-containing cultures and are not subject to ethical limitations,have a wide range of prospects for clinical application,and provide a basis or animal experimentation for clinical experiments.AIM To study the therapeutic effects of serum-free hUC-MSCs(N-hUCMSCs)in a mouse model of knee OA.METHODS Fifty-five male C57BL/6 mice were randomly divided into six groups:The blank control group,model control group,serum-containing hUC-MSCs(S-hUCMSC)group,N-hUCMSC group and hyaluronic acid(HA)group.After 9 weeks of modeling,the serum levels of interleukin(IL)-1β and IL-1 were determined.Hematoxylin-eosin staining was used to observe the cartilage tissue,and the Mankin score was determined.Immunohistochemistry and western blotting were used to determine the expression of collagen type II,matrix metalloproteinase(MMP)-1 and MMP-13.RESULTS The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 expression were significantly greater in the experimental group than in the blank control group(P<0.05).Collagen II expression in the experimental group was significantly lower than that in the blank control group(P<0.05).The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 levels the experimental group were lower than those in the model control group(P<0.05).Collagen II expression in the experimental group was significantly greater than that in the model control group(P<0.05).CONCLUSION N-hUCMSC treatment significantly alleviate the pathological damage caused by OA.The treatment effects of the ShUCMSC group and HA group were similar.
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
基金supported by a BBSRC CASE training studentship,No.BB/K011413/1(to KG)。
文摘Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner.
基金Supported by Instituto de Salud Carlos III(ISCiii),No.PI19/01266 and No.PI22/00857Consejería de Salud y Familias(Junta de Andalucía),No.PI-0216-2020 and No.PIP-0215-2020Biomedical Research Network Center for Liver and Digestive Diseases(CIBERehd)founded by the ISCIII and co-financed by European Regional Development Fund“A way to achieve Europe”ERDF.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide.Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC.Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.AIM To define the long non-codingRNA-microRNA-mRNA(lncRNA-miRNA-mRNA)predicted signatures related to selected hallmarks of cancer(apoptosis,autophagy,cell stress,cell dedifferentiation and invasiveness)in RNAseq studies using Sorafenib-treated HepG2 and SNU449 cells.Various available software analyses allowed us to establish the lncRNA-miRNA-mRNA regulatory axes following treatment in HepG2 and SNU449 cells.METHODS HepG2 and SNU449 cells were treated with Sorafenib(10μmol/L)for 24 hours.Total RNA,including small and long RNA,was extracted with a commercial miRNeasy kit.RNAseq was carried out for the identification of changes in lncRNA-miRNA-mRNA regulatory axes.RESULTS MALAT,THAP9-AS1 and SNGH17 appeared to coordinately regulate miR-374b-3p and miR-769-5p that led to upregulation of SMAD7,TIRARP,TFAP4 and FAXDC2 in HepG2 cells.SNHG12,EPB41 L4A-AS1,LINC01578,SNHG12 and GAS5 interacted with let-7b-3p,miR-195-5p and VEGFA in SNU449 cells.The axes MALAT1/hsamir-374b-3p/SMAD7 and MALAT1/hsa-mir-769-5p/TFAP4 were of high relevance for Sorafenib response in HepG2 cells,whereas PVT1/hsa-miR-195-5p/VEGFA was responsible for the differential response of SNU449 cells to Sorafenib treatment.CONCLUSION Critical lncRNAs acting as sponges of miRNA were identified that regulated mRNA expression,whose proteins mainly increased the antitumor effectiveness of the treatment(SMAD7,TIRARP,TFAP4,FAXDC2 and ADRB2).However,the broad regulatory axis leading to increased VEGFA expression may be related to the side effect of Sorafenib in SNU449 cells.
文摘BACKGROUND Over the years,the numbers of treatment options for colorectal cancer(CRC)have increased,leading to notable improvements in the overall survival of CRC patients.Although therapy may initially yield positive results,the development of drug resistance can result in treatment failure and cancer recurrence.This resistance is often attributed to the presence of cancer stem cells(CSCs).These CSCs not only contribute to therapeutic resistance but also play crucial roles in the initiation and development of tumor metastasis.AIM To investigate the antitumor effects of SH-4-54,which are mediated by targeting CSCs relative to treatment outcomes.METHODS CSCs were enriched by culturing CRC cells in serum-free medium.Hallmarks of stemness and IL-6/JAK2/STAT3 signaling were detected by Western blotting.Indicators of CSC malignancy,including proliferation,invasion,and tumor formation,were measured.RESULTS In this study,we employed SH-4-54,which exhibits anticancer activity in solid tumors through targeting the SH2 domain of both the signal transducer and activator of transcription(STAT)3 and the STAT5,and evaluated its effects on stemness and chemoresistance in colorectal CSCs.As expected,SH-4-54 treatment inhibited the phosphorylation of STAT3(p-STAT3)and decreased the percentage of ALDH1A1-positive CRC cells.The addition of SH-4-54 dissociated colorectal spheroids and decreased the expression of stemness markers,including ALDH1A1,CD44 and Nanog.SH-4-54 treatment decreased IL-6/JAK2/STAT3 signaling by inhibiting p-STAT3 and thus inhibited spheroid formation by SW480 and LoVo cells.Moreover,SH-4-54 treatment inhibited indicators of malignancy,including cell proliferation,invasion,and tumor formation,in CSCs in vitro and in vivo.Notably,SH-4-54 treatment significantly increased chemosensitivity to oxaplatin.CONCLUSION Taken together,these results indicate that SH-4-54 is a promising molecule that exerts antitumor effects on colorectal CSCs by inhibiting STAT3 signaling.
文摘Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.
基金Projects upported by the National Natural Science Foundation of China,No.39470290
文摘AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector pGEM-T. Then, the ns3 was subcloned into the vector pMSG to generate dexamethasone (DM)-inducible expression plasmid pMSG-ns3. CHO cells were transfected by pMSG-ns3 using calcium phosphate precipitation method and cultivated for 12 h-24 h. The transfected cells were induced with DM and the transient expression of NS3 protein was analyzed by ELISA and Western-blot methods.RESULTS After treated with 3×10-8mol/ L DM, the expression of NS3 was observed in the transfected CHO cells. A slightly higher level of NS3 was shown along with the time of DM treatment.CONCLUSION The inducible expressing vector pMSG-ns3 might be helpful for further studies of the characteristics of the ns3 gene in vivo.
基金supported by the National Nature Science Foundation of China (No. 31101870)Shandong Provincial Natural Science Foundation of China (No.ZR2010CQ014)
文摘Objective To investigate the protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. Methods Primary cultures of rPT cells undergoing exponential growth were incubated with 1.0 ug/mL quercetin and/or cadmium (2.5, 5.0 umol/L), in a serum-free medium at 37℃ at different time intervals. Commercial kits were used and flow cytometric analyses were performed on rPT cell cultures to assay apoptosis and oxidative stress. Results Exposure of rPT cells to cadmium acetate (2.5, 5.0 umol/L) induced a decrease in cell viability, caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, elevation of intracellular reactive oxygen species, malondialdehyde and calcium levels, depletion of mitochondrial membrane potential and intracellular glutathione, and inhibition of Na+, K+ -ATPase, Ca2+ -ATPase, glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activities were revealed during the cadmium exposure of rPT cells. However, simultaneous supplementation with 1 ug/mL quercetin protected rPT cells against cadmium-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function and elevating the intracellular antioxidants (non-enzymatic and enzymic) levels. Conclusion The present study has suggested that quercetin, as a widely distributed dietary antioxidant, contributes potentially to prevent cadmium-induced cytotoxicity in rPT cells.
文摘The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ...
基金This project was supported by a grant from National Natural Sciences Foundation of China (No 30400488)
文摘In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD rats were isolated and cultured in vitro. The retinal neural cells in SD rats were cultured and the supernatants were collected to prepare conditioned medium. The cultured rMSCs were induced to differentiate by two steps. Immunofluorescence method and anti-nestin, anti-NeuN, anti-GFAP and anti-Thyl. 1 antibodies were used to identify the cells derived from the rMSCs. The results showed that the in vitro cultured rMSCs grew well and expanded quickly. After induction with two conditioned media, rMSCs was induced to differentiate into neural progenitor cells, then into retinal neural-like cells which were positive for nestin, NeuN, GFAP and Thyl. 1 detected by fluorescence method. The findings suggested that rMSCs could be culture and expanded in vitro, and induced to differentiate into retinal neural-like cells.
文摘The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
基金supported by grants from National Natural Science Foundation of China(No.81171396)Creative Research Groups of the National Natural Science Foundation of China(No.20921062)+1 种基金National Science and Technology Major Project(No.2012ZX10002012-12)National University Students Innovation Training Project of China(No.111048673)
文摘Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells.
文摘The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong photon flux density [PFD, 2400 μEmol/(m 2·s)]. Sixteen fatty acids were identified by gas chromatography showing that AA was the dominant fatty acid (33%-41%) followed by linoleic acid (17%-21%). AA content was closely investigated with respect to total fatty acids (TFA), ash free dry weight (AFDW) of cell mass as well as total culture content. These parameters were influenced significantly in a similar manner by culture growth phase, i.e., slightly decreasing in the lag period, gradually increasing in the logarithmic phase, becoming maximal at the early stationary phase, starting to decrease at the late stationary phase, sharply dropping at the decline phase. The increase in AA per culture volume during the logarithmic phase was not only associated with the increase in AFDW but also connected with a corresponding increase in AA/TFA, TFA/AFDW as well as AA/AFDW. The sharp decrease in AA content of the culture during the decline phase was mainly due to the decrease in AA/TFA, TFA/AFDW and AA/AFDW, although AFDW declined only a small extent. Maximal AA concentration, obtained at the early stationary phase, was 900 mg/L culture volume, and the average daily net increase of AA during 9 days logarithmic growth was 1.7 g/(m 2·day). Therefore, harvesting prior to the decline phase in a batch culture, or at steady state in continuous culture mode seems best for high AA production. The latter possibility was also further confirmed by continuous culture with 5 gradients of harvesting rate.
基金supported by the National Research Foundation of Korea (NRF) (NRF2017R1C1B2002377, NRF-2016R1A5A1010148, and NRF2019R1A2C1003111)funded by the Ministry of Science and ICT (MSIT)partly supported by the Technology Innovation Program (No.10067787)funded by the Ministry of Trade, Industry & Energy (MOTE, Korea)
文摘Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
文摘Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the method for the isolation and identification of human SSCs from testicular tissue, and to determine the culture conditions required to expand SSCs on human embryonic stem cell-derived fibroblast-like cells (hdFs). Large-scale cultures of SSCs were maintained on hdF feeder layers and expanded in the presence of a combination of cytokines and glial cell line-derived neurotrophic factor for at least 2 months. Cell surface marker analysis showed that SSCs retained high levels of alkaline phosphatase activity and stained strongly for anti-stage-specific embryonic antigen (SSEA)-1, OCT4 and CD49f. They also expressed the genes OCT4, SOX3 and STRA8 as detected by reverse transcription polymerase chain reaction (RT-PCR) analysis. These data clearly illustrate a novel approach for the growth of human SSCs using hdFs as feeder cells, potentially eliminating xenogeneic contaminants. This system provides a new opportunity for the study of the regulatory mechanism of the ‘niche' that governs SSC self-renewal, and will be a valuable source of SSCs for potential clinical applications.
基金This work is supported by the National Natural Science Foundation of China(to Jungui Dai,No.30100230).
文摘Deacetoxy-13-oxo sinenxan A (1) was converted to 9a-hydroxy-13-oxo-2a, 5a, 10b-triacetoxy-4(20),11-taxadiene (2) and 10b-hydroxy-13-oxo-2a,5a,9a-triacetoxy- 4(20), 11- taxadiene (3) by Ginkgo cell suspension cultures in 45% and 15% yields, respectively.
文摘Summary: In order to investigate whether cultured normal human lens epithelial cells (LEC) express transforming growth factor β (TGF-β), reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemical methods were used for detection of TGF-β mRNA and protein in cultured normal human LEC. The results showed that a single RT-PCR amplified product about 310bp was obtained, and the sequence was homologous to the known sequence. TGF-β immunostain was positive in the plasma of LEC. It was suggested that normal human LEC could produce TGF-β, and LEC could be affected by TGF-β through autocrine action.