期刊文献+
共找到6,625篇文章
< 1 2 250 >
每页显示 20 50 100
Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease
1
作者 Ling-Xiao Yi Hui Ren Woon +3 位作者 Genevieve Saw Li Zeng Eng King Tan Zhi Dong Zhou 《Neural Regeneration Research》 SCIE CAS 2025年第11期3193-3206,共14页
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed patho... The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease. 展开更多
关键词 dopaminergic neurons induced pluripotent stem cells Parkinson's disease stem cell approaches
下载PDF
Dose-dependent effects of lead on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons 被引量:1
2
作者 Shuang Gao Liguang Sun Yuanyuan You 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期221-225,共5页
BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain ... BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 hours, cyclin D1 expression gradually decreased with exposure to increasing lead acetate concentrations (1.0-10 umol/L). CONCLUSION: Lead exposure to primary cultured rat hippocampal neurons resulted in dose-dependently disturbed cellular homeostasis, including DNA damage, reduced cyclin D1 expression, and stagnation of cell-cycle progression. 展开更多
关键词 LEAD cell-cycle arrest DNA damage cyclin D1 hippocampal neurons nerve factor neural regeneration
下载PDF
Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons
3
作者 Yalan Chen Junxin Kuang +5 位作者 Yimei Niu Hongyao Zhu Xiaoxia Chen Kwok-Fai So Anding Xu Lingling Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期908-914,共7页
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vi... Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases. 展开更多
关键词 dopaminergic neurons FGF signal induced pluripotent stem cells MIDBRAIN neural differentiation SHH signal SMAD signal WNT signal
下载PDF
Procyanidin A_1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway
4
作者 Fangfang Yan Qun Lu +1 位作者 Chengming Wang Rui Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1475-1484,共10页
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi... Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR. 展开更多
关键词 Procyanidin A_1 Digestive products Acrylamide Nuclear factor erythroid 2-related factor 2(Nrf2) Intestinal cell damage
下载PDF
Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro 被引量:6
5
作者 Chunlong Ke Baili Chen +1 位作者 Shaolei Guo Chao Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第8期832-836,共5页
BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons ... BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson’s disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats. OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro. DESIGN: Randomized grouping design. SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University. MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male, Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University. METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1α, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry. MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells. RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylase. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2.8)% and (17.8 ± 4.2)% for adult and embryonic cells, respectively, with a significant difference between the groups (P 〈 0.01). CONCLUSION: Neural stem cells from embryonic rats have a higher capacity to differentiate into dopaminergic neurons than neural stem cells derived from adult rats. 展开更多
关键词 neural stem cells DIFFERENTIATION dopaminergic neurons
下载PDF
Panax notoginseng saponins influence on transplantation of neural stem cell-derived dopaminergic neurons in a rat model of Parkinson’s disease 被引量:6
6
作者 Chunlong Ke Baili Chen +2 位作者 Chao Yang Heng Zhang Zhengsong Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第7期714-718,共5页
BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low... BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease. 展开更多
关键词 panax notoginseng saponins neural stem cells dopaminergic neurons Parkinson's disease
下载PDF
Wnt3a expression during the differentiation of adipose-derived stem cells into cholinergic neurons 被引量:3
7
作者 Bin Liu Chunying Deng +1 位作者 Yuqin Zhang Jinxia Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1463-1468,共6页
The present study analyzed changes in Wnt3a expression during differentiation of adipose-derived stern cells into cholinergic neurons. Immunocytochemistry and immunofluorescence revealed significantly increased nestin... The present study analyzed changes in Wnt3a expression during differentiation of adipose-derived stern cells into cholinergic neurons. Immunocytochemistry and immunofluorescence revealed significantly increased nestin, neuron-specific enolase, microtubule-associated protein 2, and choline acetyltransferase expression in adipose-derived stem cells isolated from Sprague-Dawley rats and cultured in vitro in neural-induced medium. These expressions increased with prolonged induction time. Real-time reverse transcription-PCR and western blot assay results demonstrated significantly increased choline acetyltransferase and Wnt3a protein and mRNA expressions, respectively, in adipose-derived stem cells following induction. Choline acetyltransferase expression positively correlated with Wnt3a protein and mRNA expressions. These results demonstrated that neural-induced medium induced differentiation of adipose-derived stem cells into cholinergic neuronal-like cells, with subsequent increased Wnt3a expression. 展开更多
关键词 adipose-derived stem cells cholinergic neurons WNT3A INDUCTION DIFFERENTIATION neural stem cells neural regeneration
下载PDF
Correlation of PDCD5 and Apoptosis in Hair Cells and Spiral Ganglion Neurons of Different Age of C57BL/6J Mice 被引量:3
8
作者 王燕 褚汉启 +6 位作者 周良强 高贺云 熊浩 陈请国 陈金 黄孝文 崔永华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第1期113-118,共6页
This study examined the expression pattern of programmed cell death 5 (PDCD5) in co-chlear hair cells and spiral ganglion neurons (SGNs) and its association with age-related hearing loss in mice.Sixty C57BL/6J (C57) m... This study examined the expression pattern of programmed cell death 5 (PDCD5) in co-chlear hair cells and spiral ganglion neurons (SGNs) and its association with age-related hearing loss in mice.Sixty C57BL/6J (C57) mice at different ages were divided into four groups (3,6,9 or 12 months).PDCD5 expression was detected by using immunohistochemistry,real-time PCR and Western blot.Morphological change of the cochleae was also evaluated by using immunoassay.The results showed that the expression of PDCD5 had a gradual increase with ageing in both protein and RNA levels in C57 mice,as well as gradually increased apoptosis of cochlear hair cells and SGNs.In addition,we also found that caspase-3 activity was enhanced and its expression was enhanced with ageing.It is implied that overexpression of PDCD5 causes the increase in caspase-3 activity and the subsequent increase of apoptosis in cochlear hair cells and SGNs,and thereby plays a role in the pathogenesis of presbycusis.Thus,PDCD5 may be a new target site for the treatment and prevention of age-related hearing loss. 展开更多
关键词 age-related hearing loss APOPTOSIS programmed cell death 5 hair cells spiral ganglion neurons
下载PDF
Intrastriatal glial cell line-derived neurotrophic factors for protecting dopaminergic neurons in the substantia nigra of mice with Parkinson disease 被引量:4
9
作者 Chenghua Xiao Yanqiang Wang +3 位作者 Hongmei Liu Hongjun Wang Junping Cao Dianshuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第4期207-210,共4页
BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher diff... BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression. 展开更多
关键词 glial cell line-derived neurotrophic factor (GDNF) dopaminergic neurons 1 -methy1-4-pheny1- 1 2 3 6-tetrahydropyridine (MPTP)
下载PDF
Prevention of central cell damage to isolated islets of Langerhans in hamsters by low temperature preconditioning 被引量:1
10
作者 Yun-Fu Cui, Ming Ma, Zhi-Dong Wang, Lei Zhang, Zhan-Liang Hu and De-En Han Harbin, China Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2005年第1期139-143,共5页
BACKGROUND: The efficacy of clinical islet transplanta- tion has been demonstrated with autografts, and although islet allografts have established insulin independence in a small number of IDDM patients, the treatment... BACKGROUND: The efficacy of clinical islet transplanta- tion has been demonstrated with autografts, and although islet allografts have established insulin independence in a small number of IDDM patients, the treatment is con- founded by the necessity of central cell damage immuno- suppression, the lack of donor tissue, and recurring islet immunogenicity. These limitations underscore a need to develop therapies to serve the large population of diabetic patients. This study was designed to document central cell damage to isolated islets of Langerhans in hamsters and its prevention. METHODS: Islets were cultured at 37 °C for 7-14 days after isolation, and then at 26 °C for 2,4 and 7 days before addi- tional culture at 37 °C for an additional 7 days. Central cell damage in the isolated islets was monitored by video-mi- croscopy and analyzed quantitatively by a computer-assis- ted image analysis system. The analysis included daily measurement of the diameter and the area of the isolated is- lets and the area of the central cell damage that developed in those islets over time during culture. Histological exami- nation and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to characterize cell damage and to monitor islet function. RESULTS; Microscopic analysis showed that during the 7 to 14 days of culture at 37 °C, central cell damage appeared in the larger islets with diameters greater than 200 μm, which included both necrotic and apoptotic cell death. Low temperature (26 °C) culture prevented central cell damage of isolated islets. The 7-day culture procedure at 26 °C could inhibit most of the central cell ( excluding diameters greater than 300 μm) damage when the islets were re- warmed to 37 °C. CONCLUSIONS: Our results indicate that central cell da- mage to isolated islets of Langerhans correlates with the size of the islets. Low temperature (26 °C) culture can preventcentral cell damage to the isolated islets, and is capable to successfully precondition these islets for 37 °C culture. These novel findings may help to understand the patho- physiology of early loss of islet tissue after transplantation, and may provide a new strategy to improve graft function in the clinical setting of islet transplantation. 展开更多
关键词 cell separation islet isolation central cell damage CULTURE HISTOLOGY
下载PDF
Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders 被引量:3
11
作者 Shaoping Hou Paul Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期28-31,共4页
Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or indu... Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders. 展开更多
关键词 neural cells induced neural stem cells induced neurons pluripotent stem cells neurological diseases
下载PDF
Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage 被引量:3
12
作者 Yifan He Jihong Zhu +3 位作者 Fang Huang Liu Qin Wenguo Fan Hongwen He 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1985-1994,共10页
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we in... The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and indicate that tooth extraction should be avoided in these populations. 展开更多
关键词 nerve regeneration Alzheimer' s disease trigeminal nerve LEARNING memory hippocampal CA1 hippocampal CA3 dentate gyrus basal forebrain medial septal nucleus vertical limb of the diagonal band cholinergic neurons cholinergic fibers pyramidal cells NSFC grants neural regeneration
下载PDF
Deriving striatal projection neurons from human pluripotent stem cells with Activin A 被引量:1
13
作者 Zoe Noakes Marija Fjodorova Meng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期1914-1916,共3页
The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primat... The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primates and rodents,respectively. 展开更多
关键词 cell MSNs PSCs Deriving striatal projection neurons from human pluripotent stem cells with Activin A STEM
下载PDF
Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning 被引量:1
14
作者 Yun-FuCui MingMa +3 位作者 Gui-YuWang De-EnHan BrigitteVollmar MichaelD.Menger 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第4期545-550,共6页
AIM: To study the core cell damage in isolated islets of Langerhans and its prevention by low temperature preconditioning (26 ℃).METHODS: Islets were cultured at 37 ℃ for 7-14 d after isolation, and then at 26 ℃ fo... AIM: To study the core cell damage in isolated islets of Langerhans and its prevention by low temperature preconditioning (26 ℃).METHODS: Islets were cultured at 37 ℃ for 7-14 d after isolation, and then at 26 ℃ for 2, 4 and 7 d before additional culture at 37 ℃ for another 7 d. Core cell damage in the isolated islets was monitored by video-microscopy and analyzed quantitatively by use of a computer-assisted image analysis system. The analysis included daily measurement of the diameter and the area of the isolated islets and the area of the core cell damage that developed in those islets over time during culture. Histology and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to characterize the cell damage and to monitor islet function.RESULTS: Microscopic analysis showed that during the 7 to 14 d of culture at 37 ℃, core cell damage occurred in the larger islets with diameters >200 μm, which included both necrotic and apoptotic cell death. Low temperature (26 ℃) culture could prevent core cell damage of isolated islets. The 7-d culture procedure at 26 ℃ could inhibit most of the core cell (excluding diameters>300 μm) damages when the islets were re-warmed at 37 ℃.CONCLUSION: Our results indicate that core cell damage within isolated islets of Langerhans correlates with the size of islets. Low temperature (26 ℃) culture can prevent core cell damage in isolated islets, and successfully precondition these islets for incubation at 37 ℃. These novel findings may help to understand the pathophysiology of early loss of islet tissue after transplantation, and may provide a new strategy to improve graft function in the clinical setting of islet transplantation. 展开更多
关键词 Islets of Langerhans Low temperature preconditioning Core cell damage
下载PDF
Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia 被引量:1
15
作者 Ke Liu Jiansheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期261-263,共3页
OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism. DATA SOURCES: We searched for the articles of permeability of... OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism. DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain is- chemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English. STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded. DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved. DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2^+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca^+2and the release of intracellular Ca^2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB. CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB destruction after cerebral ischemla. 展开更多
关键词 cell Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia
下载PDF
THE PROTECTIVE EFFECT OF Na^+ CHANNEL BLOCKERS AGAINST CELL DAMAGE CAUSED BY ISCHEMIA 被引量:1
16
作者 Zhu Zhongliang, Li Hui, Fan Xiaoli et al(Department of Physiology, Xi’an Medical University)$$$$ 《Journal of Pharmaceutical Analysis》 CAS 1999年第2期156-156,共1页
In order to observe it blockers of sodium channel obsesses the neuroprotective effect on hippocampal CA 1 pyramidal cell under the condition of transient brain ischemia, the present experiment used 24 male Wistar rat... In order to observe it blockers of sodium channel obsesses the neuroprotective effect on hippocampal CA 1 pyramidal cell under the condition of transient brain ischemia, the present experiment used 24 male Wistar rats aged 9 months and divided them into four groups. Lidocaine and/or furosemide were injected introcerebroventicularlly (I.C.V). Stained with H E and accounted the CA 1 pyramidal cell numbers by computer in each group suggested following findings: Although 5 μl of 2% lidocaine was injected I.C.V, the results indicated lidocaine didn't have any blockade to pyramidal cell injuries in hippocampal CA 1 area (P<0 05). In the group medicated with 2 5μl of both 2% lidocaine and 2% furosemide, the results showed that the combined approach had a blockade to injuries of pyramidal cells compared with control group (P<0 01). The present experiment indicates that the combined blockade of lidocaine and furosemide injected I.C.V. to Na + channel can prevent the injuries from hippocampal neurons owing to ischemia. 展开更多
关键词 THE PROTECTIVE EFFECT OF Na AGAINST cell damage CAUSED BY ISCHEMIA CHANNEL BLOCKERS
下载PDF
Protective effect of bone marrow-derived mesenchymal stem cells on dopaminergic neurons against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in rat brain slices
17
作者 Lirong Jin Zhen Hong +1 位作者 Chunjiu Zhong Yang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第1期31-35,共5页
BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors... BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices. 展开更多
关键词 bone marrow-derived mesenchymal stem cells brain slice Parkinson's disease dopaminergic neurons
下载PDF
Directional induction of dopaminergic neurons from neural stem cells using substantia nigra homogenates and basic fibroblast growth factor
18
作者 Jintao Li Qi Yan +2 位作者 Yiliu Ma Zhongtang Feng Tinghua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第7期511-516,共6页
To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to invest... To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to investigate whether a homogenate of the substantia nigra of adult rats and/or basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons. Tyrosine hydroxylase-positive cells were observed exclusively after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor for 48 hours in vitro. However, in the groups treated with homogenate supernatant or basic fibroblast growth factor alone, tyrosine hydroxylase expression was not observed. Moreover, the content of dopamine in the culture medium of subventricular zone neurons was significantly increased at 48 hours after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor. Experimental findings indicate that the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons in the substantia nigra with the ability to secrete dopamine. 展开更多
关键词 directional induction in vitro homogenate of substantia nigra basic fibroblast growth factor subventricular zone neural stem cells dopaminergic neurons
下载PDF
A review on cell damage,viability,and functionality during 3D bioprinting
19
作者 He-Qi Xu Jia-Chen Liu +1 位作者 Zheng-Yi Zhang Chang-Xue Xu 《Military Medical Research》 SCIE CAS CSCD 2023年第5期620-635,共16页
Three-dimensional(3D)bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells.Even though 3D bioprinting techniques have experienced... Three-dimensional(3D)bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells.Even though 3D bioprinting techniques have experienced significant advancement over the past decades,it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process.Generally,cell viability which is affected by several factors including the stress and the environmental factors,such as pH and temperature,is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition.The maintenance of high cell viability especially for those vulnerable cells,such as stem cells which are more sensitive to multiple stresses,is a key initial step to ensure the functionality of the artificial tissues/organs.In addition,maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs.This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes,summarizes the studies on cell viabilities and functionalities in different bioprinting processes,and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality. 展开更多
关键词 Three-dimensional bioprinting cell damage Shear stress cell viability cell functionality
下载PDF
Embryonic stem cell-derived neural progenitors as non-tumorigenic source for dopaminergic neurons
20
作者 Mei-Chih Liao Mihaela Diaconu +7 位作者 Sebastian Monecke Patrick Collombat Charles Timaeus Tanja Kuhlmann Walter Paulus Claudia Trenkwalder Ralf Dressel Ahmed Mansouri 《World Journal of Stem Cells》 SCIE CAS 2014年第2期248-255,共8页
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenit... AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice. 展开更多
关键词 Human embryonic stem cells Neural progenitor cells TERATOMA PLURIPOTENCY Dopaminergic neurons
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部