This paper introduces the general landscape of next-generation wireless communication systems (5G), including the impetus and requirements of 5G and the candidate technologies that might help 5G achieve its goals. T...This paper introduces the general landscape of next-generation wireless communication systems (5G), including the impetus and requirements of 5G and the candidate technologies that might help 5G achieve its goals. The following areas, which the author considers particularly relevant, are discussed: deteetion of and access to free spectrum over bands of a heterogeneous nature, ex- treme densification of networks (massive base station deployments), extreme increase in the number of antennas in base station ar- rays and their interaction with a novel waveform, integration of both wireless and optical sides of telecom networks, and study of wireless networks from the perspective of complex systems science. The author discusses recent research conducted by his team in each of these research areas.展开更多
There has been an exponential rise in mobile data traffic in recent times due to the increasing popularity of portable devices like tablets,smartphones,and laptops.The rapid rise in the use of these portable devices h...There has been an exponential rise in mobile data traffic in recent times due to the increasing popularity of portable devices like tablets,smartphones,and laptops.The rapid rise in the use of these portable devices has put extreme stress on the network service providers while forcing telecommunication engineers to look for innovative solutions to meet the increased demand.One solution to the problem is the emergence of fifth-generation(5G)wireless communication,which can address the challenges by offering very broad wireless area capacity and potential cut-power consumption.The application of small cells is the fundamental mechanism for the 5Gtechnology.The use of small cells can enhance the facility for higher capacity and reuse.However,it must be noted that small cells deployment will lead to frequent handovers of mobile nodes.Considering the importance of small cells in 5G,this paper aims to examine a new resource management scheme that can work to minimize the rate of handovers formobile phones through careful resources allocation in a two-tier network.Therefore,the resource management problem has been formulated as an optimization issue thatwe aim to overcome through an optimal solution.To find a solution to the existing problem of frequent handovers,a heuristic approach has been used.This solution is then evaluated and validated through simulation and testing,during which the performance was noted to improve by 12%in the context of handover costs.Therefore,this model has been observed to be more efficient as compared to the existing model.展开更多
基金supported in part by Science Foundation Ireland through CTVR CSET grant 10/CE/I1853in part by the European Commission’s FP7 project ADEL,under grant agreement ICT-619647
文摘This paper introduces the general landscape of next-generation wireless communication systems (5G), including the impetus and requirements of 5G and the candidate technologies that might help 5G achieve its goals. The following areas, which the author considers particularly relevant, are discussed: deteetion of and access to free spectrum over bands of a heterogeneous nature, ex- treme densification of networks (massive base station deployments), extreme increase in the number of antennas in base station ar- rays and their interaction with a novel waveform, integration of both wireless and optical sides of telecom networks, and study of wireless networks from the perspective of complex systems science. The author discusses recent research conducted by his team in each of these research areas.
基金This work was supported by the Taif University Researchers Supporting Project number(TURSP-2020/79),Taif University,Taif,Saudi Arabia.
文摘There has been an exponential rise in mobile data traffic in recent times due to the increasing popularity of portable devices like tablets,smartphones,and laptops.The rapid rise in the use of these portable devices has put extreme stress on the network service providers while forcing telecommunication engineers to look for innovative solutions to meet the increased demand.One solution to the problem is the emergence of fifth-generation(5G)wireless communication,which can address the challenges by offering very broad wireless area capacity and potential cut-power consumption.The application of small cells is the fundamental mechanism for the 5Gtechnology.The use of small cells can enhance the facility for higher capacity and reuse.However,it must be noted that small cells deployment will lead to frequent handovers of mobile nodes.Considering the importance of small cells in 5G,this paper aims to examine a new resource management scheme that can work to minimize the rate of handovers formobile phones through careful resources allocation in a two-tier network.Therefore,the resource management problem has been formulated as an optimization issue thatwe aim to overcome through an optimal solution.To find a solution to the existing problem of frequent handovers,a heuristic approach has been used.This solution is then evaluated and validated through simulation and testing,during which the performance was noted to improve by 12%in the context of handover costs.Therefore,this model has been observed to be more efficient as compared to the existing model.