期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca^2+ entry via the T-type Ca^2+ channel 被引量:1
1
作者 Jae-Ho Lee Jong-Uk Kim +1 位作者 Changhoon Kim Churl K. Min 《Asian Journal of Andrology》 SCIE CAS CSCD 2010年第6期807-813,共7页
Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the i... Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the identification of Ca^2+ entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca^2+ channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca^2+ channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (STAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L-1 extracellular Ca^2+, hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P 〈 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P 〈 0.05). Moreover; the hCG-induced increase in testosterone production was completely removed when external Ca^2+ was omitted, implying that Ca entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca^24- currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, Our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca^2+ entry carried out by the T-type Ca^2+ channel in the Leydig cells of mice. 展开更多
关键词 Leydig cells MIBEFRADIL STAR steroidogenesis T-type Ca^2+ channel
下载PDF
Effects of calcium-activated chloride channels on proliferation of pulmonary artery smooth muscle cells in rats under chronic hypoxic condition 被引量:2
2
作者 Zhao Yang Zhenxiang Zhang Yongjian Xu Tao Wang Dan Ma Tao Ye 《Journal of Nanjing Medical University》 2008年第1期39-43,共5页
Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured P... Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured PASMCs were placed under normoxic and chronic hypoxic conditions:The cells were observed by light and electron microscope; The cell cycles were observed by flow-cytometry; Immunocytochemistry staining was used to detect the expressions of PCNA, c-fos and c-jun of PASMCs; Cytoplasmic free Ca^2+ concentration ([Ca^2+]i) in PASMCs was investigated by fluorescent quantitation using fluorospectrophotometer. Results:The PASMCs were contractile phenotype under normoxic conditions. Observation by transmission electron microscope: In kytoplasm of contractile phenotype cells, myofilament bundles were abundant and the content of cell organs such as Golgi's bodies were rare. The PASMCs were synthetic phenotype under chronic hypoxic condition. There were increased free ribosomes, dilated rough endoplasmic reticulums, highly developed Golgi complexes, decreased or disappeared thick filaments and dense body in kytoplasm of synthetic phenotype cells. After NFA and IAA-94, the situations were reversed The number of S +G2M PASMCs were significantly increased in chronic hypoxic condition; The NFA and IAA-94 were shown to significantly decrease them from (28.6±1.0)% to (16.0±1.6)% and the number of G0G1 PASMCs significantly increased from (71.4± 1.9)% to (83.9 ± 1.6)% (P〈 0.01). In chronic hypoxic conditions, the expression of proliferating cell nucleus antigen was significantly increased; The NFA and IAA-94 were shown to significantly decrease it from (81 ± 6)% to (27 ± 7)%(P 〈 0.01). The expression of c-fos and c-jun were significantly increased in'chronic hypoxic conditions; The NFA and IAA-94 were shown to significantly decrease them from 0.15 ±0.02, 0.32 ± 0.05 to 0.05 ± 0.01, 0.12 ± 0.05, respectively (P〈 0.01); Under chronic hypoxic conditions, [Ca^2+]i was increased; The NFA and IAA-94 decreased it from (281.8±16,5)nmol/L to (117.7 ± 15.4)nmol/L(P 〈 0.01). Conclusion:Hypoxia initiated the change of PASMCs from contractile to synthetic phenotype and increased proliferation of PASMCs. NFA and IAA-94 depressed cell proliferation by blocking ClCa channels in hypoxic condition. These may play an important role in proliferation of PASMCs under chronic hypoxic conditions. 展开更多
关键词 pulmonary artery smooth muscle cells Ca^2+-activated Cl- channels niflumic acid indaryloxyacetic acid cell proliferation
下载PDF
映山红花总黄酮对大鼠神经元及EA.hy926内皮细胞超极化作用及机制 被引量:3
3
作者 张洁 陈志武 《中国临床药理学与治疗学》 CAS CSCD 2017年第6期606-610,共5页
目的:观察映山红花总黄酮(total flavones of rhododendra,TFR)对大鼠海马神经元及EA.hy926内皮细胞膜超极化作用及机制研究。方法:体外培养大鼠海马神经元和EA.hy926内皮细胞,利用Di BAC_4(3)荧光染料在钙离子成像系统488 nm激发波长... 目的:观察映山红花总黄酮(total flavones of rhododendra,TFR)对大鼠海马神经元及EA.hy926内皮细胞膜超极化作用及机制研究。方法:体外培养大鼠海马神经元和EA.hy926内皮细胞,利用Di BAC_4(3)荧光染料在钙离子成像系统488 nm激发波长下检测EA.hy926和大鼠海马神经元荧光强度变化以反映膜电位改变情况。结果:与Control组比较,TFR(270 mg/L)和TFR(810 mg/L)能显著降低EA.hy926内皮细胞内荧光强度,即细胞发生了超极化现象,且BK_(Ca)特异性阻断剂Ib TX及联用IK_(Ca)阻断剂Ch TX和SK_(Ca)阻断剂apamin均能抑制TFR(270 mg/L)引起的荧光强度降低现象,而内源性硫化氢(hydrogen sulphide,H_2S)合成酶抑制剂DL-炔丙基甘氨酸(DL-propargylglycine,PPG)对这一超极化效应无显著影响;与Control组比较,TFR(270 mg/L)和TFR(810 mg/L)也能显著降低大鼠海马神经元荧光强度,且Ib TX能抑制TFR(270 mg/L)引起的荧光强度降低现象。结论:TFR可引起大鼠海马神经元和EA.hy926细胞膜超极化,其作用机制可能与激活细胞膜上钙激活钾通道(Ca^(2+)-sensitive K^+ channels,K_(Ca))有关。 展开更多
关键词 映山红花总黄酮 内皮细胞 海马神经元 钙激活钾离子通道 细胞膜电位
下载PDF
瞬时受体电位M2抑制剂A10对缺糖缺氧后复糖复氧细胞的保护作用 被引量:1
4
作者 黄卓群 余夏飞 +5 位作者 刘星宇 马康 黄敏华 李芳芳 杨巍 牛建国 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2021年第1期106-112,共7页
目的:探讨瞬时受体电位M2(TRPM2)抑制剂A10对缺糖缺氧后复糖复氧(OGD/R)细胞模型的保护作用。方法:采用SH-SY5Y细胞系制备OGD/R损伤模型。将细胞随机分为空白对照组、模型对照组和A10组。细胞计数试剂盒8检测细胞存活率;活性氧检测试剂... 目的:探讨瞬时受体电位M2(TRPM2)抑制剂A10对缺糖缺氧后复糖复氧(OGD/R)细胞模型的保护作用。方法:采用SH-SY5Y细胞系制备OGD/R损伤模型。将细胞随机分为空白对照组、模型对照组和A10组。细胞计数试剂盒8检测细胞存活率;活性氧检测试剂盒检测细胞活性氧水平;四甲基罗丹明甲酯法检测线粒体膜电位;一步法TUNEL细胞凋亡检测试剂盒检测凋亡细胞数量;蛋白质印迹法测定cleaved caspase 3蛋白表达。结果:相对于3、20、30、50和100μmol/L,10μmol/L浓度的A10具有较低的细胞毒性及较好的通道活性抑制作用。与模型对照组比较,A10组活性氧水平降低(P<0.05),线粒体膜电位降低程度改善(P<0.05),凋亡细胞数减少(P<0.05),凋亡相关蛋白cleaved caspase 3表达减少(P<0.05)。结论:A10可以通过抑制TRPM2通道功能、减少细胞外钙离子内流、降低细胞活性氧水平、稳定线粒体膜电位水平和减少细胞凋亡缓解OGD/R后细胞的损伤。 展开更多
关键词 瞬时受体电位M2通道 缺糖缺氧/复糖复氧 活性氧 线粒体膜电位 细胞凋亡 Cleaved caspase 3 SH-SY5Y细胞
下载PDF
Functional Interaction of the SNARE Protein NtSyp121 in Ca^2+ Channel Gating, Ca^2+ Transientsand ABA Signalling of Stomatal Guard Cells 被引量:11
5
作者 Sergei Sokolovski Adrian Hills +1 位作者 Robert A. Gay Michael R. Blatt 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第2期347-358,共12页
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a so... There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K^+ and CI^- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca^2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca^2+ channel gating and its consequent effects on cytosolic-free [Ca^2+] ([Ca^2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca^2+]i elevation independently of the plasma membrane Ca^2+ channels. Consistent with these observations, Ca^2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca^2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca^2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca^2+ channels at the plant cell plasma membrane and, because [Ca^2+]i plays a key role in the control of K^+ and CI^- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure. 展开更多
关键词 Ca^2+ channel hyperpolarization-activated abscisic acid membrane vesicle traffic cytosolic-free [Ca^2+]elevation NICOTIANA plant pathogen defense.
原文传递
Calcium channels and their role in regenerative medicine 被引量:1
6
作者 Nassem Ahamad Brij B Singh 《World Journal of Stem Cells》 SCIE 2021年第4期260-280,共21页
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types.Based on their plasticity potential,they are divided into totipotent(morula stage cells),pluripotent(embryoni... Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types.Based on their plasticity potential,they are divided into totipotent(morula stage cells),pluripotent(embryonic stem cells),multipotent(hematopoietic stem cells,multipotent adult progenitor stem cells,and mesenchymal stem cells[MSCs]),and unipotent(progenitor cells that differentiate into a single lineage)cells.Though bone marrow is the primary source of multipotent stem cells in adults,other tissues such as adipose tissues,placenta,amniotic fluid,umbilical cord blood,periodontal ligament,and dental pulp also harbor stem cells that can be used for regenerative therapy.In addition,induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells,and thus could be another source for regenerative medicine.Several diseases including neurodegenerative diseases,cardiovascular diseases,autoimmune diseases,virus infection(also coronavirus disease 2019)have limited success with conventional medicine,and stem cell transplantation is assumed to be the best therapy to treat these disorders.Importantly,MSCs,are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair.Moreover,MSCs have the potential to migrate towards the damaged area,which is regulated by various factors and signaling processes.Recent studies have shown that extracellular calcium(Ca^(2+))promotes the proliferation of MSCs,and thus can assist in transplantation therapy.Ca^(2+)signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors,Ca^(2+)channels/pumps/exchangers,Ca^(2+)buffers,and Ca^(2+)sensors,which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity,which will be discussed in this review. 展开更多
关键词 Ca^(2+)signaling Ca^(2+)channels Transient receptor potential channel 1/Orai1 stem cells Regenerative medicine Stem cells
下载PDF
Current Injection Provokes Rapid Expansion of the Guard Cell Cytosolic Volume and Triggers Ca^2+ Signals
7
作者 Lena J. Voss Rainer Hedrich M. Rob G. Roelfsema 《Molecular Plant》 SCIE CAS CSCD 2016年第3期471-480,共10页
High-resolution microscopy opens the door for detailed single-cell studies with fluorescent reporter dyes and proteins. We used a confocal spinning disc microscope to monitor fluorescent dyes and the fluorescent prote... High-resolution microscopy opens the door for detailed single-cell studies with fluorescent reporter dyes and proteins. We used a confocal spinning disc microscope to monitor fluorescent dyes and the fluorescent protein Venus in tobacco and Arabidopsis guard cells. Multi-barreled microelectrodes were used to inject dyes and apply voltage pulses, which provoke transient rises in the cytosolic Ca^2+ level. Voltage pulses also caused changes in the distribution of Lucifer Yellow and Venus, which pointed to a reversible increase of guard cell cytosolic volume. The dynamic cytosolic volume changes turned out to be provoked by current injection of ions. A reduction of the clamp current, by blocking K^+ uptake channels with Cs^+, strongly suppressed the cytosolic volume changes. Cs^+ not only inhibited the expansion of the cytosol, but also inhibited hyperpolarization-induced elevations of the cytosolic Ca^2+ concentration. A complete loss of voltage-induced Ca^2+ signals occurred when Ca^2+-permeable plasma membrane channels were simultaneously blocked with La^3+. This shows that two mechanisms cause hyperpolarization-induced elevation of the cytosolic Ca^2+-concentration: (i) activation of voltage-dependent Ca^2+-permeable channels, (ii) osmotically induced expansion of the cytosol, which leads to a release of Ca^2+ from intracellular stores. 展开更多
关键词 guard cell cytosolic Ca^2+ cytosolic volume voltage clamp current injection ion channel
原文传递
NADase and now Ca^(2+) channel, what else to learn about plant NLRs?
8
作者 Li Wan Zuhua He 《Stress Biology》 CAS 2021年第1期80-83,共4页
Plant intracellular immune receptors known as NLR(Nucleotide-binding Leucine-rich repeat,NB-LRR)proteins confer resistance and cause cell death upon recognition of cognate effector proteins from pathogens.Plant NLRs c... Plant intracellular immune receptors known as NLR(Nucleotide-binding Leucine-rich repeat,NB-LRR)proteins confer resistance and cause cell death upon recognition of cognate effector proteins from pathogens.Plant NLRs contain a variable N-terminal domain:a Toll/interleukin-1 receptor(TIR)domain or a coiled-coil(CC)domain or an RPW8(Resistance to Powdery Mildew 8)-like CC(CCR)domain.TIR-NLR,CC-NLR and CCR-NLR are known as TNL,CNL and RNL,respectively.TNLs and CNLs recognize pathogen effectors to activate cell death and defense responses,thus are regarded as sensor NLRs.RNLs are required downstream of TNLs to activate cell death and defense responses,thus are regarded as helper NLRs.Previous studies show that some TNLs form tetrameric resistosome as NAD+cleaving enzymes to transduce signal,while some CNLs form pentameric resistosome with undefined biochemical function.Two recent breakthrough studies show that activated CNL and RNL function as Ca2+channel to cause cell death and defense responses and provide a completely new insight into the downstream signaling events of CNL and TNL pathways. 展开更多
关键词 Immune receptors NLR Defense cell death Ca^(2+)channel
原文传递
Intermediate conductance, Ca^2+-activated K^+ channels: a novel target for chronic renal diseases
9
作者 Claudia A. BERTUCCIO Daniel C. DEVOR 《Frontiers in Biology》 CAS CSCD 2015年第1期52-60,共9页
Renal failure is a medical condition in which the kidneys are not working properly. There are two types of kidney failure: 1) acute kidney failure, which is sudden and often reversible with adequate treatment; and 2... Renal failure is a medical condition in which the kidneys are not working properly. There are two types of kidney failure: 1) acute kidney failure, which is sudden and often reversible with adequate treatment; and 2) chronic renal failure, which develops slowly and often is not reversible. The last stage of chronic renal failure is fatal without dialysis or kidney transplant. The treatment for chronic renal failure is focusing on slowing the progression of kidney damage. Several reports have described a promising approach to slow the loss of renal function through inhibition of the basolateral membrane, Ca^2+-activated K^+ (KCa3.1) channel with a selective and nontoxic blocker TRAM-34. This review summarizes pathophysiological studies that describe the role of KCa3.1 in kidney diseases. 展开更多
关键词 Ca^2+-activated K^+ channels KCa3.1 renal fibrosis polycystic kidney disease diabetes nephropathy transplant cell proliferation C1 secretion renal failure
原文传递
高等植物细胞中的钙通道 被引量:9
10
作者 康彬 童哲 《应用与环境生物学报》 CAS CSCD 1998年第4期414-421,共8页
钙通道在高等植物细胞中参与众多的信号转导过程,对钙通道的研究最近几年获得长足的进步:不仅在质膜中直接发现了电位依赖性的钙通道、牵张刺激激活的机械敏感性钙通道等,而且在液泡膜中发现了众多具有不同开放调控机制的钙通道:受... 钙通道在高等植物细胞中参与众多的信号转导过程,对钙通道的研究最近几年获得长足的进步:不仅在质膜中直接发现了电位依赖性的钙通道、牵张刺激激活的机械敏感性钙通道等,而且在液泡膜中发现了众多具有不同开放调控机制的钙通道:受化学信使控制的钙释放通道、电位依赖性钙通道、钙离子诱导的钙释放通道. 展开更多
关键词 钙通道 高等植物细胞 植物细胞 质膜 液泡
下载PDF
肠上皮快速复原过程中的细胞信号传递:多胺和K^+通道的影响(英文) 被引量:29
11
作者 汪建英 《生理学报》 CAS CSCD 北大核心 2003年第4期365-372,共8页
胃肠道粘膜上皮细胞具有重要的屏障作用,可以保护次上皮组织抵御一系列的有害物质,包括过敏原、病毒以及微生物病原体。粘膜损伤后的修复有赖于上皮细胞对信号网络的调节,而这一网络系统控制着基因的表达、细胞的存活、迁移及增殖。近... 胃肠道粘膜上皮细胞具有重要的屏障作用,可以保护次上皮组织抵御一系列的有害物质,包括过敏原、病毒以及微生物病原体。粘膜损伤后的修复有赖于上皮细胞对信号网络的调节,而这一网络系统控制着基因的表达、细胞的存活、迁移及增殖。近几年的研究结果显示,在胃肠道粘膜的修复中,多胺起到关键作用;且细胞多胺的调控是众多信号传递路径的焦点。本文简要综述了多胺在肠粘膜上皮快速复原中的功能和机制,特别是对K^+通道活性的影响。 展开更多
关键词 肠上皮 细胞内钙离子 粘膜损伤 膜电位 细胞迁移 钾通道
下载PDF
竹提取物的钙拮抗作用及对心肌缺血的影响 被引量:7
12
作者 叶玲 杨远友 +3 位作者 莫尚武 肖前刚 曾超 刘宁 《世界竹藤通讯》 2005年第4期34-36,共3页
利用45Ca路膜测量技术和冠脉结扎法研究了慈竹、硬头黄、麻竹、毛竹等竹提取 物对大鼠细胞膜钙通道钙内流、外溢以及对心肌缺血的影响。发现竹提取物能阻滞细胞膜 PDC钙通道钙离子内流;能促进已流入心、肝、肺、动脉等多种内脏器官细胞... 利用45Ca路膜测量技术和冠脉结扎法研究了慈竹、硬头黄、麻竹、毛竹等竹提取 物对大鼠细胞膜钙通道钙内流、外溢以及对心肌缺血的影响。发现竹提取物能阻滞细胞膜 PDC钙通道钙离子内流;能促进已流入心、肝、肺、动脉等多种内脏器官细胞中超载的钙 离子外溢;对大鼠急性心肌缺血有保护作用,可抑制结扎冠脉引起的心电图改变。结果表 明,竹提取物在医药、保健食品领域有应用前景。 展开更多
关键词 同位素^45Ca 钙拮抗剂 细胞膜钙通道 竹提取物 心肌缺血
下载PDF
Ion Channels at the Nucleus: Electrophysiology Meets the Genome 被引量:2
13
作者 Antonius J.M. Matzkea Thomas M. Weiger Marjori Matzke 《Molecular Plant》 SCIE CAS CSCD 2010年第4期642-652,共11页
The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here... The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways. 展开更多
关键词 Ion channel nuclear Ca^+2 signaling nuclear electrophysiology nuclear membrane nuclear pore.
原文传递
Structure and Function of TPC1 Vacuole SV Channel Gains Shape 被引量:2
14
作者 Rainer Hedrich Thomas D. Mueller +1 位作者 Dirk Becker Irene Marten 《Molecular Plant》 SCIE CAS CSCD 2018年第6期764-775,共12页
Plants and animals in endosomes operate TPCI/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its... Plants and animals in endosomes operate TPCI/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation ap- proaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta. 展开更多
关键词 Ca^2+ sensors TPC1/SV channel vacuole membrane voltage voltage sensor
原文传递
Regulation Mechanisms of Stomatal Oscillation 被引量:4
15
作者 Hui-Min YANG Jian-Hua ZHANG Xiao-Yan ZHANG 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第10期1159-1172,共14页
Stomata function as the gates between the plant and the atmospheric environment. Stomatal movement, including stomatal opening and closing, controls CO2 absorption as the raw material for photosynthesis and water loss... Stomata function as the gates between the plant and the atmospheric environment. Stomatal movement, including stomatal opening and closing, controls CO2 absorption as the raw material for photosynthesis and water loss through transpiration. How to reduce water loss and maintain enough CO2 absorption has been an interesting research topic for some time. Simple stomatal opening may elevate CO2 absorption, but, in the meantime, promote the water loss, whereas simple closing of stomatal pores may reduce both water loss and CO2 absorption, resulting in impairment of plant photosynthesis. Both processes are not economical to the plant. As a special rhythmic stomatal movement that usually occurs at smaller stomatal apertures, stomatal oscillation can keep CO2 absorption at a sufficient level and reduce water loss at the same time, suggesting a potential improvement in water use efficiency. Stomatal oscillation is usually found after a sudden change in one environmental factor in relatively constant environments. Many environmental stimuli can induce stomatal oscillation. It appears that, at the physiological level, feedback controls are involved in stomatal oscillation. At the cellular level, possibly two different patterns exist: (i) a quicker responsive pattern; and (ii) a slower response. Both involve water potential changes and water channel regulation, but the mechanisms of regulation of the two patterns are different. Some evidence suggests that the regulation of water channels may play a vital and primary role in stomatal oscillation. The present review summarizes studies on stomatal oscillation and concludes with some discussion regarding the mechanisms of regulation of stomatal oscillation. 展开更多
关键词 Ca^2+ signaling guard cell plant stress signaling plant water relation stomatal oscillation water channel.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部