期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
1
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 al-cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy
2
作者 Xueli He Shengkun Lv +4 位作者 Ruifeng Dou Yanying Zhang Junsheng Wang Xunliang Liu Zhi Wen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2873-2895,共23页
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr... Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend. 展开更多
关键词 Centrifugal casting al-cu alloy MICROSTRUCTURE hot tearing SIMULATION
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
3
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
下载PDF
Effects of external stress aging on morphology and precipitation behavior of θ'' phase in Al-Cu alloy 被引量:4
4
作者 傅上 易丹青 +3 位作者 刘会群 江勇 王斌 胡湛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2282-2288,共7页
The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission e... The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging. 展开更多
关键词 al-cu alloy stress aging MORPHOLOGY precipitation behavior first principle calculation interface energy
下载PDF
Microstructure and crystal growth direction of Al-Cu alloy 被引量:1
5
作者 陈体军 李向威 +1 位作者 郭海洋 郝远 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1399-1409,共11页
The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouri... The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys. 展开更多
关键词 al-cu alloy directional solidification crystal growth direction permanent mould casting MICROSTRUCTURE
下载PDF
Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al-Cu alloy 被引量:14
6
作者 Jae-Ho JANG Dae-Geun NAM +1 位作者 Yong-Ho PARK Ik-Min PARK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期631-635,共5页
In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the stand... In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the standard artificial aging treatment for Al-Cu alloy followed heat treatments of solution treatment at 510-530 ℃ for 2 h,quenching in water at 60 ℃ and then artificial aging at 160-190 ℃ for 2-8 h.The effects of solution treatment and artificial aging on the microstructure and mechanical properties of Al-Cu alloy were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and tensile test.The results of solution treatment indicate that the mechanical properties of Al-Cu alloy increase and then decrease with the increase of solution temperature.This is because the residual phases dissolve gradually into the matrix,and the fraction of the precipitation and the size of the re-crystallized grain increased.Compared to the solution temperature,the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu alloy.The artificial aging treatments were conducted at 160-180 ℃ for 2-8 h.The results show that the ultimate tensile strength can be obtained at 180 ℃ for 8 h.Ultimate tensile strength increased with increasing time or temperature.Yield strength was found as the same as the ultimate tensile strength result. 展开更多
关键词 al-cu alloy solid solution treatment artificial aging MICROSTRUCTURE mechanical property
下载PDF
Two-dimensional cellular automaton model for simulating structural evolution of binary alloys during solidification 被引量:4
7
作者 张林 张彩碚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1410-1416,共7页
Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or grow... Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification. 展开更多
关键词 binary alloys phase transformation SOLIDIFICATION DIFFUSION NUCLEATION computer simulation cellular automaton
下载PDF
Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum alloy by cellular automaton 被引量:14
8
作者 Tao ZHANG Shi-hong LU +1 位作者 Yun-xin WU Hai GONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1327-1337,共11页
In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression t... In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression tests were conducted toobtain material constants,and models of dislocation density,nucleation rate and recrystallized grain growth were fitted by leastsquare method.The effects of strain,strain rate,deformation temperature and initial grain size on microstructure variation werestudied.The results show that the DRX plays a vital role in grain refinement in hot deformation.Large strain,high temperature andsmall strain rate are beneficial to grain refinement.The stable size of recrystallized grain is not concerned with initial grain size,butdepends on strain rate and temperature.Kinetic characteristic of DRX process was analyzed.By comparison of simulated andexperimental flow stress–strain curves and metallographs,it is found that the established CA models can accurately predict themicrostructure evolution of7055aluminum alloy during hot compressive deformation. 展开更多
关键词 7055 aluminum alloy cellular automaton dynamic recrystallization hot compression grain refinement
下载PDF
Enhanced thermal stability and mechanical properties of high-temperature resistant Al-Cu alloy with Zr and Mn micro-alloying 被引量:7
9
作者 Teng-teng SUN Ji-wei GENG +5 位作者 Ze-yu BIAN Yi WU Ming-liang WANG Dong CHEN Nai-heng MA Hao-wei WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期64-78,共15页
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition... The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail. 展开更多
关键词 al-cu alloy micro-alloying thermal stability precipitate evolution high-temperature mechanical properties
下载PDF
Forming properties and microstructure of Al-Cu alloy prepared by liquid-die forging 被引量:5
10
作者 ZHANG Xin XU Hong +4 位作者 CHEN Tong WANG Chang-shun WANG Yan-long XU Lan-jun LI Hong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期60-79,共20页
The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that se... The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that serious Cu segregation was found in the wheel specimen;the microstructure of the Al-Cu wheel was comprised of the casting microstructure and a small amount of the deformed microstructure;the best heat treatment and water quenching system were found to solution treated at(530±5)℃ for 4 h followed by(535±5)℃ for 24 h and aging treated at(155±5)℃ for 4 h;the fracture morphologies of the samples heated under T 6 and T 5-1 heat treatment showed flat,tough nest,and poor plastic characteristics;the fracture morphologies of the samples heated under T 4 heat treatment exhibited complete resilience,but no residual metallographic characteristic;the sample treated under T 4 protocol had the best elongation;the fracture failure was mainly due to the formation of the CuAl_(2)(θ)phases;and the fracture mechanism of the Al-Cu wheel was intergranular fracture. 展开更多
关键词 forming properties MICROSTRUCTURE liquid-die al-cu alloy
下载PDF
Open cellular magnesium alloys for biodegradable orthopaedic implants 被引量:5
11
作者 Karel Lietaert Ludger Weber +3 位作者 Jan Van Humbeeck Andreas Mortensen Jan Luyten Jan Schrooten 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期303-311,共9页
Replication processing using NaCl spaceholders offers the possibility to produce cellular structures for a range of Mg alloys. Four Mg alloys (AZ63, M2, ZM21 and MZX211) were processed into open cellular structures wi... Replication processing using NaCl spaceholders offers the possibility to produce cellular structures for a range of Mg alloys. Four Mg alloys (AZ63, M2, ZM21 and MZX211) were processed into open cellular structures with a pore size near 500 μm and a porosity of 75% using an optimized NaCl leaching procedure. The production method was found to be robust and yielded samples of acceptable strength and stiffness. Their dissolution rate (by H2 release in simulated body fluid) and mechanical properties (by cyclic compression) were measured. For all 4 alloys the initial mechanical properties mimic those of cancellous bone;however, the dissolution rate is too high for direct use in the human body, leading to excessive hydrogen evolution and overly rapid degradation of mechanical properties. Further post-processing of the material is thus required. 展开更多
关键词 MAGNESIUM cellular BIODEGRADABLE Biomaterial Replication processing alloyS
下载PDF
Modeling on dynamic recrystallization of aluminium alloy 7050 during hot compression based on cellular automaton 被引量:6
12
作者 李军超 谢志远 +1 位作者 李松蒲 臧艳艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期497-507,共11页
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy... The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions. 展开更多
关键词 cellular automaton dynamic recrystallization aluminium alloy 7050 flow stress
下载PDF
Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model 被引量:9
13
作者 TSAI De-chang HWANG Weng-sing 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1072-1077,共6页
The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.I... The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well. 展开更多
关键词 Cu-Cr alloy vacuum continuous casting solidification morphology simulation modified cellular automaton model finite difference method
下载PDF
Corrosion behavior of hypoeutectic Al-Cu alloys in H_2SO_4 and NaCl solutions 被引量:3
14
作者 Wislei R.Osório Leandro C.Peixoto +1 位作者 Leonardo R.Garcia Amauri Garcia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第4期241-246,共6页
The aim of this work was to evaluate the electrochemical behaviour of hypoeutectic Al-Cu alloys immersed in two different solutions containing sulphate and chloride ions, respectively. The influence of Al2Cu associate... The aim of this work was to evaluate the electrochemical behaviour of hypoeutectic Al-Cu alloys immersed in two different solutions containing sulphate and chloride ions, respectively. The influence of Al2Cu associated to the dendritic arm spacing on the general corrosion resistance of such alloys is analysed. The typical microstructural pattern was examined by using scanning electron microscope. The corrosion tests were performed in both 0.5 M sulphuric acid and 0.5 M NaCl solutions at 25℃ by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. Equivalent circuits by using the ZView software, were also used to provide quantitative support for the discussions. It was found that as the Cu content increased (i.e., increasing the Al2Cu fraction), a higher susceptibility to the corrosion action in the NaCl solution is detected. In contrast, the tests carried out in the H2SO4 solution resulted in similar corrosion,rates for the three different hypoeutectic alloys. 展开更多
关键词 al-cu alloys Al2Cu CORROSION MICROSTRUCTURE CASTINGS
下载PDF
Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al-Cu alloy 被引量:4
15
作者 Ming-ye DONG Yue ZHAO +2 位作者 Quan LI Fu-de WANG Ai-ping WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期750-764,共15页
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert... Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures. 展开更多
关键词 CD welding wire wire and arc additive manufacturing al-cu alloy
下载PDF
Simulation of dynamic recrystallization for aluminium alloy 7050 using cellular automaton 被引量:4
16
作者 黄始全 易幼平 刘超 《Journal of Central South University》 SCIE EI CAS 2009年第1期18-24,共7页
The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystall... The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃. 展开更多
关键词 aluminium alloy 7050 dynamic recrystallization cellular automaton
下载PDF
Cellular automaton simulation of dynamic recrystallization behavior in V-10Cr-5Ti alloy under hot deformation conditions 被引量:5
17
作者 Zhuo-han CAO Yu SUN +4 位作者 Chen ZHOU Zhi-peng WAN Wen-hua YANG Li-li REN Lian-xi HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期98-111,共14页
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocatio... The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains. 展开更多
关键词 V-10Cr-5Ti alloy hot deformation dynamic recrystallization cellular automaton MICROSTRUCTURE numerical simulation grain refinement
下载PDF
Effect of returns on microstructure and mechanical properties of Al-Cu based alloys 被引量:2
18
作者 Li Min Wang Hongwei +1 位作者 Wei Zunjie Zhu Zhaojun 《China Foundry》 SCIE CAS 2010年第1期37-42,共6页
It is well known that maximal utilization of the returns can be beneficial for cost reduction,preservation of natural resources and protection of the environment,by making them into recycled Al-Cu alloys.In this study... It is well known that maximal utilization of the returns can be beneficial for cost reduction,preservation of natural resources and protection of the environment,by making them into recycled Al-Cu alloys.In this study,the influences of returns on the microstructure and mechanical properties of Al-Cu alloys have been investigated by means of optical microscopy and scanning electron microscopy.The results showed that the returns could be used to produce recycled Al-Cu alloys with fine and uniform microstructure and excellent mechanical properties,including ultimate tensile strength,yield strength and ductility.It was found that the maximum performance of the recycled Al-Cu alloy in their properties could be achievable when the returns content was 20wt.%,which gave 219 MPa,87.16 MPa and 12.15% at as-cast state,and 525 MPa,445.3 MPa and 14.14% after heat treated,in their tensile strengths,yield strengths and elongations,respectively.These values were much higher than those of primary alloy. 展开更多
关键词 al-cu alloy returns MICROSTRUCTURE mechanical properties
下载PDF
Simulation of α-Al grain formation in high vacuum die-casting Al-Si-Mg alloys with multi-component quantitative cellular automaton method 被引量:4
19
作者 Yong-zhi Hao Hai-dong Zhao +2 位作者 Xu Shen Xue-ling Wang Hui-ting Zheng 《China Foundry》 SCIE CAS 2022年第2期99-108,共10页
Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitativ... Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval. 展开更多
关键词 Al-Si-Mg alloys high vacuum die-casting cellular automaton α-Al grains external solidification crystals
下载PDF
Simulation of isothermal precision extrusion of NiTi shape memory alloy pipe coupling by combining finite element method with cellular automaton 被引量:3
20
作者 ZHANG Yan-qiu JIANG Shu-yong +1 位作者 ZHAO Ya-nan ZHU Xiao-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期506-514,共9页
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method... In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction. 展开更多
关键词 shape memory alloy dynamic recrystallization cellular automaton finite element method EXTRUSION
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部