High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle ...High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.展开更多
Polymethylmethacrylate(PMMA) bone cement technology has progressed from industrial Plexiglass administration in the 1950 s to the recent advent of nanoparticle additives. Additives have been trialed to address problem...Polymethylmethacrylate(PMMA) bone cement technology has progressed from industrial Plexiglass administration in the 1950 s to the recent advent of nanoparticle additives. Additives have been trialed to address problems with modern bone cements such as the loosening of prosthesis, high post-operative infection rates, and inflammatory reduction in interface integrity. This review aims to assess current additives used in PMMA bone cements and offer an insight regarding future directions for this biomaterial. Low index(< 15%) vitamin E and low index(< 5 g) antibiotic impregnated additives significantly address infection and inflammatory problems, with only modest reductions in mechanical strength. Chitosan(15% w/w PMMA) and silver(1% w/w PMMA) nanoparticles have strong antibacterial activity with no significant reduction in mechanical strength. Future work on PMMA bone cements should focus on trialing combinations of these additives as this may enhance favourable properties.展开更多
A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as trietha...A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as triethanolamine,chloride,saccharide and a kind of divalent alcohol were simultaneously tested according to the arrangement of response surface methodology.Mathematical models were established to express the quantitative relationship between the chemical components of cement additive and the compressive strength of treated blend cement.The effectiveness and the possible interactions of these four chemicals contributing to the strength development of blend cement were further explored by the pareto chart and the contour plot.Finally according the performance analysis of four chemicals,the optimized formulations were brought forward and were validated in practical trials by Turkey's multiple comparison.展开更多
Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types...Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.展开更多
The application of polycarboxylic acid as a fluid loss additive for cement(i.e.,a substance specifically designed to lower the volume of filtrate that passes through the cement)can prolong the thickening time of cemen...The application of polycarboxylic acid as a fluid loss additive for cement(i.e.,a substance specifically designed to lower the volume of filtrate that passes through the cement)can prolong the thickening time of cement slurries.Given the lack of data about the effects of carboxylic acid monomers as possible components for the additives traditionally used for oil-well cement,in this study different cases are experimentally investigated considering different types of these substances,concentrations,temperatures,and magnesium ion contamination.The results demonstrate that itaconic acid has a strong retarding side effect,while maleic and acrylic acids have similar influences on the thickening time of the cement slurry.The rheological properties of the cement slurry tend to deteriorate when the carboxylic acid monomer content in the fluid loss additive is increased to 40%.If the temperature exceeds 80°C,there is a significant decrease in the related impact on the thickening duration.With an increase in the intrusion of magnesium ions to>0.5%,both the rheological properties of the cement slurry and the thickening time are affected in a negative way.展开更多
The influences of additives of NH_3,HCl,KOH and CH_3OH on the solvothermal synthesis of the Zn-based metal-organic frameworks(Zn-MOF_5s)were investigated.Powder X-ray diffraction(PXRD),thermal gravimetric analysis(TGA...The influences of additives of NH_3,HCl,KOH and CH_3OH on the solvothermal synthesis of the Zn-based metal-organic frameworks(Zn-MOF_5s)were investigated.Powder X-ray diffraction(PXRD),thermal gravimetric analysis(TGA),Fourier translation infrared spectroscope(FT-IR),N_2adsorption/desorption at 77 K and CO_2sorption measurements were used to characterize the as-prepared Zn-MOF_5s.The experimental results showthat additives of NH_3,CH_3OH,HCl and KOH in the synthesis of the Zn-MOF_5s do not change the underlying topology,but they are extremely sensitive to the pore textural properties,thus changing the CO_2adsorption capacity.Additives would lower the pore width and the surface area,and then lower the CO_2adsorption capacity of Zn-MOF_5s.展开更多
针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月1...针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。展开更多
Belite-rich cement (BRC) can be made at lower temperature, but it has unsatisfactory reactivity. The crystal structure of dicalcium silicate (C2S) was modified by solutionizing some additional irons. By adding bar...Belite-rich cement (BRC) can be made at lower temperature, but it has unsatisfactory reactivity. The crystal structure of dicalcium silicate (C2S) was modified by solutionizing some additional irons. By adding barium sulfate (BaSO4) in the raw meals, the clinkers were easier to be burnt, and the compressive strength of BaSO4-modified BRC was considerably improved. The distortion of the crystal structure of C2S was confirmed by the interplanar distance change and nuclear magnetic resonance (NMR) of ^29Si in C2S. An effective way was found to activate C2S and to broaden the application field of Belite-rich cement.展开更多
Chloro-propylene sulfite (CIPS) was employed as electrolyte additive of Li/S batteries for the first time. Linear potential sweep test showed that the CIPS keeps high electrochemical stability even under the voltage...Chloro-propylene sulfite (CIPS) was employed as electrolyte additive of Li/S batteries for the first time. Linear potential sweep test showed that the CIPS keeps high electrochemical stability even under the voltage of 5.0V. Being used as electrolyte additive in Li/S batteries, CIPS displayed an excellent property for self-discharge prohibition. With CIPS additive the Li/S cells initial discharge capacity was 856.2 mAh·g^-1 and 830.8 mAh·g^-1 at the current density of 15 mA.g and 30 mA·g^-1 , after 30 cycles the discharge capacities were contained at as high as 753.8 mAh.g and 715.6 mAh·g^-1. By means of infrared spectra, TG/DTA experiment and element conten analysis the speculated reason of CIPS's novel function as additive was proposed.展开更多
Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, wi...Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, with different water addition in the same bauxile-based LC Castable mix. The flow resistance indicates the mobility, whereas the torque viscosity dictates the stability of a castable during installation. It has been observed that with 6.0wt% water addition, such a mix possesses good vibration castable characteristics; with 6.5 wt%, it shows good self-flow castable characteristics; and with 7.0 wt%, it can be a good pumpable castable, in every case with comparable mechanical properties. While with 7.5 wt% water addition, the properties of such castable are definitively impaired.展开更多
In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), ...In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.展开更多
[Objective] The research aimed to explore the effects of comminution technology on the dissolution of active components from compound feed additive of Strobi/anthes cusia. [Method] Using active component adenosine in ...[Objective] The research aimed to explore the effects of comminution technology on the dissolution of active components from compound feed additive of Strobi/anthes cusia. [Method] Using active component adenosine in principal herb S. cusia and chlorogenic acid in minister drug Lonicera japonica Thunb. as dissolution indices,the effects of ultrafine comminution on the dissolution degree of compound feed additive of S. cusia were analyzed. [ Result] The dissolution degree of adenosine and chlorogenic acid in ultra micro particles were obviously higher than that of common particles. Ultrafine comminution could significantly quicken the dissolution rate of adenosine and chlorogenic acid in compound feed additive of S. cusia, shorten the extraction time, avoid the breakage of active components in long-time extraction process,and meanwhile saved the energy greatly. [ Conclusion] The ultrafine comminution technology could obviously increase the dissolution degree of active components in compound feed additive of S. cusia.展开更多
An asymptotic existence of balanced incomplete block (BIB) designs and pairwise balanced designs (PBD) has been discussed in [1]-[3]. On the other hand, the existence of additive BIB designs and pairwise additive BIB ...An asymptotic existence of balanced incomplete block (BIB) designs and pairwise balanced designs (PBD) has been discussed in [1]-[3]. On the other hand, the existence of additive BIB designs and pairwise additive BIB designs with k = 2?and?λ = 1?has been discussed with direct and recursive constructions in [4]-[8]. In this paper, an asymptotic existence of pairwise additive BIB designs is proved by use of Wilson’s theorem on PBD, and?also for some l?and k the exact existence of l?pairwise additive BIB designs with block size k and?λ = 1?is discussed.展开更多
The research project'Development and application of FCC additive for maximization of propylene and isobutylene'jointly undertaken by RIPP,the Baling Petrochemical Company(BPC)and the SINOPEC
Additive manufacturing (AM), while enabling the production of parts with complex geometries, presents new challenges. In particular, the achievement of the basic mechanical properties of the alloy must be ensured. In ...Additive manufacturing (AM), while enabling the production of parts with complex geometries, presents new challenges. In particular, the achievement of the basic mechanical properties of the alloy must be ensured. In general, the strength-ductility properties of metals depend strongly on their microstructure, and controlling these properties requires paying attention to the alloy composition, processing technique and heat treatments. Austenite 316L stainless steel parts produced by AM demonstrate good ductility and high yield strength—higher than that obtained with annealed 316L. Some preferred orientation of the mechanical properties was found as a function of the laser path, namely, the Young’s modulus varied with respect to the angle between the build direction and the normal to the build direction. In the present study, samples of AM 316L in three orientations relative to the print direction (0˚, 45˚and 90˚) are compared to a forged sample. Mechanical properties, scanning electron microscopy-SEM fractography, energy dispersive X-ray spectroscope-EDS analysis of the fracture and optical cross section images of the samples along the stress tension after the failure are presented.展开更多
Large deposits of cement raw material and resources like limestone, gypsum and shales/clays found from the Koh Sulaiman area of South Punjab (Saraikistan) and Balochistan Provinces, Pakistan. The installation of cemen...Large deposits of cement raw material and resources like limestone, gypsum and shales/clays found from the Koh Sulaiman area of South Punjab (Saraikistan) and Balochistan Provinces, Pakistan. The installation of cement industries especially in South Punjab/Saraikistan Province due to close occurrences of resources should develop the area and increase the export. The Koh Sulaiman regions of South Punjab (Saraikistan) have huge gypsum deposits which deserve for further exploitation. Pakistan is agricultural country and fertility of cultivated lands is vital. Fertilizer resources like phosphate deposits are moderate but the deposits of phosphate and potash bearing rocks are very vast and need their further explorations and exploitation in the Indus Basin. Pakistan has very large construction, dimension and decor stone deposits like limestone, marble, dolomite and igneous rocks like granite, dolerite, serpentine, etc. which needs further exploitation for the development of the areas and increase export. Pakistan is spending a lot of earnings for importing glass, glass wares, pottery, clay, etc. while Pakistan has these resources which needs exploitation of own resources. The best structures and geotectonic elements like the Northern and Western Indus Sutures and Karakoram Suture and Indus placers which are rich in gemstones and jewelry resources. To increase gems and jewelry export, these industries requires reduction in gemstones smuggling and encouragement for gem appraisal and jewelry industry at high level for value addition. In short, Pakistan is rich in natural resources but poor in development. Try should be made to develop and export the own mineral commodities like cement, gypsum, marble, gemstones and jewelry.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Nos.21975087,U1966214)the Certificate of China Postdoctoral Science Foundation Grant(2020M672337).
文摘High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.
文摘Polymethylmethacrylate(PMMA) bone cement technology has progressed from industrial Plexiglass administration in the 1950 s to the recent advent of nanoparticle additives. Additives have been trialed to address problems with modern bone cements such as the loosening of prosthesis, high post-operative infection rates, and inflammatory reduction in interface integrity. This review aims to assess current additives used in PMMA bone cements and offer an insight regarding future directions for this biomaterial. Low index(< 15%) vitamin E and low index(< 5 g) antibiotic impregnated additives significantly address infection and inflammatory problems, with only modest reductions in mechanical strength. Chitosan(15% w/w PMMA) and silver(1% w/w PMMA) nanoparticles have strong antibacterial activity with no significant reduction in mechanical strength. Future work on PMMA bone cements should focus on trialing combinations of these additives as this may enhance favourable properties.
基金Funded by National Basic Research Program of China (No.2009CB623100)
文摘A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as triethanolamine,chloride,saccharide and a kind of divalent alcohol were simultaneously tested according to the arrangement of response surface methodology.Mathematical models were established to express the quantitative relationship between the chemical components of cement additive and the compressive strength of treated blend cement.The effectiveness and the possible interactions of these four chemicals contributing to the strength development of blend cement were further explored by the pareto chart and the contour plot.Finally according the performance analysis of four chemicals,the optimized formulations were brought forward and were validated in practical trials by Turkey's multiple comparison.
文摘Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.
文摘The application of polycarboxylic acid as a fluid loss additive for cement(i.e.,a substance specifically designed to lower the volume of filtrate that passes through the cement)can prolong the thickening time of cement slurries.Given the lack of data about the effects of carboxylic acid monomers as possible components for the additives traditionally used for oil-well cement,in this study different cases are experimentally investigated considering different types of these substances,concentrations,temperatures,and magnesium ion contamination.The results demonstrate that itaconic acid has a strong retarding side effect,while maleic and acrylic acids have similar influences on the thickening time of the cement slurry.The rheological properties of the cement slurry tend to deteriorate when the carboxylic acid monomer content in the fluid loss additive is increased to 40%.If the temperature exceeds 80°C,there is a significant decrease in the related impact on the thickening duration.With an increase in the intrusion of magnesium ions to>0.5%,both the rheological properties of the cement slurry and the thickening time are affected in a negative way.
基金Fujian Province Natural Science Foundation of China(No.2017J01673)
文摘The influences of additives of NH_3,HCl,KOH and CH_3OH on the solvothermal synthesis of the Zn-based metal-organic frameworks(Zn-MOF_5s)were investigated.Powder X-ray diffraction(PXRD),thermal gravimetric analysis(TGA),Fourier translation infrared spectroscope(FT-IR),N_2adsorption/desorption at 77 K and CO_2sorption measurements were used to characterize the as-prepared Zn-MOF_5s.The experimental results showthat additives of NH_3,CH_3OH,HCl and KOH in the synthesis of the Zn-MOF_5s do not change the underlying topology,but they are extremely sensitive to the pore textural properties,thus changing the CO_2adsorption capacity.Additives would lower the pore width and the surface area,and then lower the CO_2adsorption capacity of Zn-MOF_5s.
基金地震数值预测联合实验室开放基金项目(2020LNEF03)APSCO Earthquake Research Project PhaseⅡ:Integrating Satellite and Ground Observations for Earthquake Signatures and Precursors(WX0519502)。
文摘针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。
文摘Belite-rich cement (BRC) can be made at lower temperature, but it has unsatisfactory reactivity. The crystal structure of dicalcium silicate (C2S) was modified by solutionizing some additional irons. By adding barium sulfate (BaSO4) in the raw meals, the clinkers were easier to be burnt, and the compressive strength of BaSO4-modified BRC was considerably improved. The distortion of the crystal structure of C2S was confirmed by the interplanar distance change and nuclear magnetic resonance (NMR) of ^29Si in C2S. An effective way was found to activate C2S and to broaden the application field of Belite-rich cement.
文摘Chloro-propylene sulfite (CIPS) was employed as electrolyte additive of Li/S batteries for the first time. Linear potential sweep test showed that the CIPS keeps high electrochemical stability even under the voltage of 5.0V. Being used as electrolyte additive in Li/S batteries, CIPS displayed an excellent property for self-discharge prohibition. With CIPS additive the Li/S cells initial discharge capacity was 856.2 mAh·g^-1 and 830.8 mAh·g^-1 at the current density of 15 mA.g and 30 mA·g^-1 , after 30 cycles the discharge capacities were contained at as high as 753.8 mAh.g and 715.6 mAh·g^-1. By means of infrared spectra, TG/DTA experiment and element conten analysis the speculated reason of CIPS's novel function as additive was proposed.
文摘Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, with different water addition in the same bauxile-based LC Castable mix. The flow resistance indicates the mobility, whereas the torque viscosity dictates the stability of a castable during installation. It has been observed that with 6.0wt% water addition, such a mix possesses good vibration castable characteristics; with 6.5 wt%, it shows good self-flow castable characteristics; and with 7.0 wt%, it can be a good pumpable castable, in every case with comparable mechanical properties. While with 7.5 wt% water addition, the properties of such castable are definitively impaired.
文摘In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.
基金funded by Guangdong Science and Technology Study Program(2010B090400529)
文摘[Objective] The research aimed to explore the effects of comminution technology on the dissolution of active components from compound feed additive of Strobi/anthes cusia. [Method] Using active component adenosine in principal herb S. cusia and chlorogenic acid in minister drug Lonicera japonica Thunb. as dissolution indices,the effects of ultrafine comminution on the dissolution degree of compound feed additive of S. cusia were analyzed. [ Result] The dissolution degree of adenosine and chlorogenic acid in ultra micro particles were obviously higher than that of common particles. Ultrafine comminution could significantly quicken the dissolution rate of adenosine and chlorogenic acid in compound feed additive of S. cusia, shorten the extraction time, avoid the breakage of active components in long-time extraction process,and meanwhile saved the energy greatly. [ Conclusion] The ultrafine comminution technology could obviously increase the dissolution degree of active components in compound feed additive of S. cusia.
文摘An asymptotic existence of balanced incomplete block (BIB) designs and pairwise balanced designs (PBD) has been discussed in [1]-[3]. On the other hand, the existence of additive BIB designs and pairwise additive BIB designs with k = 2?and?λ = 1?has been discussed with direct and recursive constructions in [4]-[8]. In this paper, an asymptotic existence of pairwise additive BIB designs is proved by use of Wilson’s theorem on PBD, and?also for some l?and k the exact existence of l?pairwise additive BIB designs with block size k and?λ = 1?is discussed.
文摘The research project'Development and application of FCC additive for maximization of propylene and isobutylene'jointly undertaken by RIPP,the Baling Petrochemical Company(BPC)and the SINOPEC
文摘Additive manufacturing (AM), while enabling the production of parts with complex geometries, presents new challenges. In particular, the achievement of the basic mechanical properties of the alloy must be ensured. In general, the strength-ductility properties of metals depend strongly on their microstructure, and controlling these properties requires paying attention to the alloy composition, processing technique and heat treatments. Austenite 316L stainless steel parts produced by AM demonstrate good ductility and high yield strength—higher than that obtained with annealed 316L. Some preferred orientation of the mechanical properties was found as a function of the laser path, namely, the Young’s modulus varied with respect to the angle between the build direction and the normal to the build direction. In the present study, samples of AM 316L in three orientations relative to the print direction (0˚, 45˚and 90˚) are compared to a forged sample. Mechanical properties, scanning electron microscopy-SEM fractography, energy dispersive X-ray spectroscope-EDS analysis of the fracture and optical cross section images of the samples along the stress tension after the failure are presented.
文摘Large deposits of cement raw material and resources like limestone, gypsum and shales/clays found from the Koh Sulaiman area of South Punjab (Saraikistan) and Balochistan Provinces, Pakistan. The installation of cement industries especially in South Punjab/Saraikistan Province due to close occurrences of resources should develop the area and increase the export. The Koh Sulaiman regions of South Punjab (Saraikistan) have huge gypsum deposits which deserve for further exploitation. Pakistan is agricultural country and fertility of cultivated lands is vital. Fertilizer resources like phosphate deposits are moderate but the deposits of phosphate and potash bearing rocks are very vast and need their further explorations and exploitation in the Indus Basin. Pakistan has very large construction, dimension and decor stone deposits like limestone, marble, dolomite and igneous rocks like granite, dolerite, serpentine, etc. which needs further exploitation for the development of the areas and increase export. Pakistan is spending a lot of earnings for importing glass, glass wares, pottery, clay, etc. while Pakistan has these resources which needs exploitation of own resources. The best structures and geotectonic elements like the Northern and Western Indus Sutures and Karakoram Suture and Indus placers which are rich in gemstones and jewelry resources. To increase gems and jewelry export, these industries requires reduction in gemstones smuggling and encouragement for gem appraisal and jewelry industry at high level for value addition. In short, Pakistan is rich in natural resources but poor in development. Try should be made to develop and export the own mineral commodities like cement, gypsum, marble, gemstones and jewelry.