This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr...The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.展开更多
The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w...The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.展开更多
A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o...A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.展开更多
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product...The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.展开更多
To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-p...To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple.展开更多
The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice ...The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This ...Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.展开更多
AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC imp...AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.展开更多
Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing syste...Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.展开更多
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi...Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.展开更多
To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test we...To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test were adopted under long-term heat treatment condition. Microstructure of these materials is also analyzed by scanning electronic microscopy (SEM) and mercury intrusion porosimeter (MIP) in order to further unveil its mechanism and interrelation between microstructure and its properties. The results indicate that in the area investigated, cement-based material with w/b 0.17, like RPC, possesses low porosity and excellent durability. Moreover, its porosity will further decrease under long-term heat treatment compared with normal heat treatment. Its long-term durability is much superior to that of other cement-based materials with w/b 0.25 or 0.35 as high strength concrete(HSC).展开更多
The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering can...The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary.展开更多
As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materi...As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materials, the reflectivity, transmission efficiency and pore structure were analyzed by using the vector network analyzer and mercury injection apparatus. Results show that silica fume can make the mortar more compact and the porosity of sample with 9% silica fume is only 17.8%, which is far lower than the control sample;With the increase of the silica fume content, the peak of reflectivity curve increases from -23.2 dB to -16.0 dB, and then decreases from -16.04 dB to -28.7 dB in the frequency range of 6 – 18 GHz. Reflectivity of sample with 3% content of silica fume is lower than other samples within 26.5 - 40 GHz;Transmission efficiency of samples shows the trend of increase with silica fume content increases from 0% to 6% within 8.2 - 12.4 GHz, 12 - 18 GHz and 26.5 - 40 GHz, but when the content increases from 6% to 9%, the transmission efficiency of samples reduces.展开更多
By ring test and bend test, the improvement of waste tire rubber particles on the crack- resistance and flexural behaviors of cement-based materials were investigated. Test results show that the cracking time of the r...By ring test and bend test, the improvement of waste tire rubber particles on the crack- resistance and flexural behaviors of cement-based materials were investigated. Test results show that the cracking time of the ring specimens can be retarded by the incorporation of rubber particles in the cement paste and mortar. The improvement in the crack-resistance depended on the rubber fraction. When the rubber fraction was 20% in volume, the cracking time was retarded about 15 h for the paste and 24 d for the mortar respectively. Flexural properties were evaluated based on the bend test results for both mortar and concrete containing different amount of rubber particles. Test results show that rubberized mortar and concrete specimens exhibit ductile failure and significant deformation before fracture. The ultimate deformations of both mortar and concrete specimen increase more than 2-4 times than control specimens.展开更多
Cement-based materials (CBMs),such as paste,mortar and concrete,are highly alkaline with an initial high pH of approximately 12.0 to 13.8.CBMs have a high pH due to the existing oxide mineral portlandite and alkali me...Cement-based materials (CBMs),such as paste,mortar and concrete,are highly alkaline with an initial high pH of approximately 12.0 to 13.8.CBMs have a high pH due to the existing oxide mineral portlandite and alkali metal contents in Portland cement.The high pH of concrete provides excellent protection and reinforces the steel bars against corrosion.The pH of concrete does not remain constant due to ageing and other defect-causing factors,such as chloride ingress,alkali leaching,carbonation,corrosion,acid attack,moisture and biodegradation process.Reducing the concrete pH has negative impact on the strength,durability and service life of concrete buildings.However,the high pH of concrete may also cause concrete structure deterioration,such as alkali silica reaction,porosity and moisture related damages in concrete structures.The pH of CBMs can be influenced by high temperatures.For instance,the extremely high volume (85%-100%) of slag-blended cement pastes shows considerable pH reduction from 12.80 to 11.34 at 800 ℃.As many concrete structure deterioration are related to concrete pH,using an accurate and reliable method to measure pH and analyse the durability of reinforced concrete structure based on pH values is extremely important.This study is a comprehensive review of the pH of CBM in terms of measurement,limitations and varying values for different CBM types.展开更多
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self...The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.展开更多
Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is develo...Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.展开更多
The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and deso...The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale.展开更多
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金Funded by the Scientific and Technological Project of Hubei Province(2004BCS005)
文摘The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.
基金Funded by the National Basic Research Program of China(No.2009CB623200)Zhejiang Natural Science Foundation(No.LQ12E08002)+1 种基金Ningbo Natural Science Foundation(No.2012A610159)the School Disciplinary Projects(No.zj1113,XKL11D2081)
文摘The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.
基金Funded by the Fujian Education Department(Nos.JA11329,JA12412)Quanzhou(Fujian)Technology Research and Development Program(Nos.2013Z158,2013Z47,2010G7)
文摘A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.
基金Project(51208391) supported by the National Natural Science Foundation of China
文摘The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.
基金Funded by the National Natural Science Foundations of China(Nos.51778378,51478278)。
文摘To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple.
基金Funded by the Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (JBGS008)the Research Lab Construction of Hainan University (ZY2019HN0904)the Opening Project of State Key Laboratory of Green Building Materials (2022GBM01)。
文摘The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金supported by the National Natural Science Foundation of China (Grant No.50808066)the Scientific Research Foundation for Returned Overseas Chinese Scholars
文摘Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.
基金Funded the Major Sate Basic Research Development Program of China(973 Program)(No.2009CB23201)Beijing Natural Science Foundation(No.8100001)National Natural Science Foundation of China(No.51278014)
文摘AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.
文摘Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.
基金Funded by the Major State Basic Research Development Program of China('973'Project,2001CB610705)
文摘Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.
基金Funded by the National Natural Science Foundation of China(No.50708114)the Postgraduate Science Foundation of China(No.20060400883)
文摘To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test were adopted under long-term heat treatment condition. Microstructure of these materials is also analyzed by scanning electronic microscopy (SEM) and mercury intrusion porosimeter (MIP) in order to further unveil its mechanism and interrelation between microstructure and its properties. The results indicate that in the area investigated, cement-based material with w/b 0.17, like RPC, possesses low porosity and excellent durability. Moreover, its porosity will further decrease under long-term heat treatment compared with normal heat treatment. Its long-term durability is much superior to that of other cement-based materials with w/b 0.25 or 0.35 as high strength concrete(HSC).
基金Project(2018YFD1101002) supported by the National Key R&D Program of ChinaProject(51308405) supported by the National Natural Science Foundation of China。
文摘The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary.
文摘As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materials, the reflectivity, transmission efficiency and pore structure were analyzed by using the vector network analyzer and mercury injection apparatus. Results show that silica fume can make the mortar more compact and the porosity of sample with 9% silica fume is only 17.8%, which is far lower than the control sample;With the increase of the silica fume content, the peak of reflectivity curve increases from -23.2 dB to -16.0 dB, and then decreases from -16.04 dB to -28.7 dB in the frequency range of 6 – 18 GHz. Reflectivity of sample with 3% content of silica fume is lower than other samples within 26.5 - 40 GHz;Transmission efficiency of samples shows the trend of increase with silica fume content increases from 0% to 6% within 8.2 - 12.4 GHz, 12 - 18 GHz and 26.5 - 40 GHz, but when the content increases from 6% to 9%, the transmission efficiency of samples reduces.
基金the National Natural Science Foundation of China(No.50679054)
文摘By ring test and bend test, the improvement of waste tire rubber particles on the crack- resistance and flexural behaviors of cement-based materials were investigated. Test results show that the cracking time of the ring specimens can be retarded by the incorporation of rubber particles in the cement paste and mortar. The improvement in the crack-resistance depended on the rubber fraction. When the rubber fraction was 20% in volume, the cracking time was retarded about 15 h for the paste and 24 d for the mortar respectively. Flexural properties were evaluated based on the bend test results for both mortar and concrete containing different amount of rubber particles. Test results show that rubberized mortar and concrete specimens exhibit ductile failure and significant deformation before fracture. The ultimate deformations of both mortar and concrete specimen increase more than 2-4 times than control specimens.
基金Funded by University of Malaya (No.GPF015A-2018)。
文摘Cement-based materials (CBMs),such as paste,mortar and concrete,are highly alkaline with an initial high pH of approximately 12.0 to 13.8.CBMs have a high pH due to the existing oxide mineral portlandite and alkali metal contents in Portland cement.The high pH of concrete provides excellent protection and reinforces the steel bars against corrosion.The pH of concrete does not remain constant due to ageing and other defect-causing factors,such as chloride ingress,alkali leaching,carbonation,corrosion,acid attack,moisture and biodegradation process.Reducing the concrete pH has negative impact on the strength,durability and service life of concrete buildings.However,the high pH of concrete may also cause concrete structure deterioration,such as alkali silica reaction,porosity and moisture related damages in concrete structures.The pH of CBMs can be influenced by high temperatures.For instance,the extremely high volume (85%-100%) of slag-blended cement pastes shows considerable pH reduction from 12.80 to 11.34 at 800 ℃.As many concrete structure deterioration are related to concrete pH,using an accurate and reliable method to measure pH and analyse the durability of reinforced concrete structure based on pH values is extremely important.This study is a comprehensive review of the pH of CBM in terms of measurement,limitations and varying values for different CBM types.
基金Project(2018YFC0705404)supported by the National Key Technology Research and Development of ChinaProjects(51878480,51678442,51878481,51878496)supported by the National Natural Science Foundation of China+1 种基金Project(U1534207)supported by the National High-speed Train Union Fund,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.
文摘Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.
基金supported in part by“The National Natural Science Foundation of China (No.52168038)”“Applied Basic Research Foundation of Yunnan Province (No.2019FD125)”“Applied Basic Research Foundation of Yunnan Province (No.202201AT070159)”.
文摘The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale.