The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ...The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.展开更多
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope...Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e...The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.展开更多
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ...Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia...Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss...Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.展开更多
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f...Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates ...Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.展开更多
The numerical simulation program of PFC2D(Particle Flow Code in 2 Dimension)particle flow based on the flow-solid coupling principle and,on its built-in FISHTANK function library and FISH language,defines the flow equ...The numerical simulation program of PFC2D(Particle Flow Code in 2 Dimension)particle flow based on the flow-solid coupling principle and,on its built-in FISHTANK function library and FISH language,defines the flow equation and pressure equation of fluid domain respectively,and carries out numerical simulation calculations on the diffusion process and,on the morphology and particle displacement of slurry during the slurry injection process.By adjusting the parameters of hist,n_bond,s_bond and measure in the PFC command flow,the tracking of granular body displacement changes is achieved,and the mesoscopic mechanism such as the diffusion law of soil slurry at different depths and the change of formation porosity is revealed.The numerical calculations show that:the grouting pressure has a significant effect on the alteration and destruction of the formation structure,and the fracturing effect becomes gradually worse with increasing adhesive strength,while the porosity increases significantly with increasing grouting pressure.Based on the elastic-plastic theory of the Mohr-Colomb criterion to theoretically derive the stress field of the soil around the borehole,it is pointed out that the mechanical mechanism of annular tension and radial compression is the fundamental reason for the appearance of fracturing grouting action mode.The increase of slurry viscosity is beneficial to improve the grouting effect of fracturing-compacting grouting,while the increase of friction coefficient has little effect on the grouting effect.The comparative analysis of the laboratory tests shows that the PFC2D simulation of the grouting process is feasible.展开更多
Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin...Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.展开更多
A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Theref...A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.展开更多
The application of grouting technology in housing construction is to inject liquid grout into the cavities and cracks of housing construction.After it solidifies,the stability of housing construction can be improved.G...The application of grouting technology in housing construction is to inject liquid grout into the cavities and cracks of housing construction.After it solidifies,the stability of housing construction can be improved.Grouting technology is not only very convenient but is also environmental-friendly,and it is relatively low-cost.Therefore,it is widely used in housing construction.In this paper,the types of grouting technology and its application advantages in housing construction are analyzed,and specific application strategies are put forward,in hopes of improving the quality of housing construction.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(grant No.52074169,No.51704280)the China Postdoctoral Science Foundation(No.2023M732109)the Opening Foundation of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2021FK02).
文摘The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.
基金This work has been supported by the Conselleria de Inno-vación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金the scientific research foundation of Zhejiang Provincial Natural Science Foundation of China (LTGG24E090002)Zhejiang University of Water Resources and Electric Power (xky2022013)+1 种基金Major Science and Technology Plan Project of Zhejiang Provincial Department of Water Resources (RA1904)the water conservancy management department, Zhejiang Design Institute of Water Conservancy and Hydro Electric Power Co., Ltd. and the construction company for their support。
文摘The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.
基金supported by financial support from the National Natural Science Foundation of China(U1904177)the Excellent Youth Natural Science Foundation of Henan Province of China(212300410079)+2 种基金the Subproject of the Key Project of the National Development and Reform Commission of China(202203001)the Project of Young Key Teachers in Henan Province of China(2019GGJS01)Horizontal Research Projects(20230352A).
文摘Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
文摘Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
文摘Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.
基金Innovation and Entrepreneurship Funds of Tiandi Science&Technology Co.Ltd.,Grant/Award Number:2022-2-TD-MS013。
文摘Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金support from 111 Project(Grant No.B18062)the Graduate Research and Innovation Foundation of Chongqing in China(Grant No.CYS20026)the National Key Research and Development Program of China(Grant No.2017YFC0703504).
文摘Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.
文摘The numerical simulation program of PFC2D(Particle Flow Code in 2 Dimension)particle flow based on the flow-solid coupling principle and,on its built-in FISHTANK function library and FISH language,defines the flow equation and pressure equation of fluid domain respectively,and carries out numerical simulation calculations on the diffusion process and,on the morphology and particle displacement of slurry during the slurry injection process.By adjusting the parameters of hist,n_bond,s_bond and measure in the PFC command flow,the tracking of granular body displacement changes is achieved,and the mesoscopic mechanism such as the diffusion law of soil slurry at different depths and the change of formation porosity is revealed.The numerical calculations show that:the grouting pressure has a significant effect on the alteration and destruction of the formation structure,and the fracturing effect becomes gradually worse with increasing adhesive strength,while the porosity increases significantly with increasing grouting pressure.Based on the elastic-plastic theory of the Mohr-Colomb criterion to theoretically derive the stress field of the soil around the borehole,it is pointed out that the mechanical mechanism of annular tension and radial compression is the fundamental reason for the appearance of fracturing grouting action mode.The increase of slurry viscosity is beneficial to improve the grouting effect of fracturing-compacting grouting,while the increase of friction coefficient has little effect on the grouting effect.The comparative analysis of the laboratory tests shows that the PFC2D simulation of the grouting process is feasible.
基金Funding Statement:The research described in this paper was financially supported by the National Natural Science Foundation of China(No.51974172)Innovation and Technology Program of Universities in Shandong Province,China(No.2020KJH001)+1 种基金National Natural Science Foundation of China(No.52274131)State Key Laboratory of Coal Mining and Clean Utilization(No.2021-CMCU-KF017).
文摘Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.
文摘A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.
文摘The application of grouting technology in housing construction is to inject liquid grout into the cavities and cracks of housing construction.After it solidifies,the stability of housing construction can be improved.Grouting technology is not only very convenient but is also environmental-friendly,and it is relatively low-cost.Therefore,it is widely used in housing construction.In this paper,the types of grouting technology and its application advantages in housing construction are analyzed,and specific application strategies are put forward,in hopes of improving the quality of housing construction.