期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Friction Characteristics Between Marine Clay and Construction Materials
1
作者 KOU Hailei HUANG Jiaming CHENG Yang 《Journal of Ocean University of China》 CAS CSCD 2024年第2期427-437,共11页
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar... Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM. 展开更多
关键词 marine clay construction material interface friction behavior surface roughness Finite Element Method
下载PDF
Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay 被引量:4
2
作者 章定文 曹智国 +1 位作者 范礼彬 邓永锋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期79-83,共5页
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations... This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay. 展开更多
关键词 soft marine clay salt concentration CEMENTATION unconfined compression strength
下载PDF
Macro-and Micro-Properties of Two Natural Marine Clays in China 被引量:6
3
作者 蒋明镜 彭立才 +2 位作者 朱合华 林奕禧 黄良机 《China Ocean Engineering》 SCIE EI 2009年第2期329-344,共16页
In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby ... In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1)both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2)An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featured by small and medium-sized pores.The differences in their macro-and micro-properties can be attributed to different sedimentation environments. 展开更多
关键词 marine clay macro- and micro- properties comparison MICROSTRUCTURE
下载PDF
Effect of Cyclic Loading Frequency on Undrained Behaviors of Undisturbed Marine Clay 被引量:15
4
作者 陈云敏 姬美秀 黄博 《海洋工程:英文版》 EI 2004年第4期643-651,共9页
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a... Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure. 展开更多
关键词 cyclic triaxial test undisturbed marine clay effect of cyclic frequency dynamic strain pore water pressure dynamic strength creep effect
下载PDF
A New Model for Correlation between the Marine Benthic Oxygen Isotope and Red Clay Magnetic Susceptibility on the Chinese Loess Plateau 被引量:1
5
作者 GONG Hujun ZHANG Rui +1 位作者 ZHANG Yunxiang YUE Leping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1163-1164,共2页
Objective Aeolian sediments on the Chinese Loess Plateau contain some of the best continental archives of palaeoclimate change in the Late Cenozoic. The consensus that alternating MS in loess-paleosols in China was du... Objective Aeolian sediments on the Chinese Loess Plateau contain some of the best continental archives of palaeoclimate change in the Late Cenozoic. The consensus that alternating MS in loess-paleosols in China was due to the strengthening and weakening of the East Asian palaeomonsoon provides an excellent climate record when correlated with global ice volume. Significantly, new basal dates from the red clay underlying the loess-paleosol sequence indicate that wind-blown dust began to accumulate on the Chinese Loess Plateau at least 22 million years ago. There are differences of opinion, 展开更多
关键词 ODP MS of from on A New Model for Correlation between the marine Benthic Oxygen Isotope and Red clay Magnetic Susceptibility on the Chinese Loess Plateau for
下载PDF
Improvements of marine clay slurries using chemicale-physical combined method(CPCM) 被引量:1
6
作者 Dongqing Wu Wenyu Xu Romy Tjuar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期220-225,共6页
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ... In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Chemical e physical combined method(CPCM) Soil improvement marine clay(MC) slurry Land reclamation Chemical stabilization Vacuum preloading(VP) Geo-bags SURCHARGE
下载PDF
Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions
7
作者 吕冬伟 宋茜 王旭晨 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第1期131-143,共13页
A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period... A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d^-1, 0.049-0.103 d^-1 and 0.011 to 0.069 d-l, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments. 展开更多
关键词 algal organic matter DECOMPOSITION marine sediments clay minerals
下载PDF
Study on the Adsorption of Metal Ions by Immobilized Marine Algae with the Existence of Clay
8
作者 郑盛华 王宪 +4 位作者 蔡真珍 陈丽丹 邱海源 黄智伟 钱爱红 《Marine Science Bulletin》 CAS 2005年第2期86-90,共5页
The process of adsorption of metal ions by immobilized marine algae with the existence of clay was investigated. It can be noted from the results that, after mixing with clay, the adsorption rate increases rapidly wit... The process of adsorption of metal ions by immobilized marine algae with the existence of clay was investigated. It can be noted from the results that, after mixing with clay, the adsorption rate increases rapidly with the increasing amount of the marine algae. When pH=5, the best ratio between the clay and the marine algae is 1:4 for Pb2+. The result of in situ handling of the waste water containing heavy metals shows that the average adsorption rates of heavy metal irons Cu2+, Cd2+, Pb2+ and Ni2+ are all over 70 %. 展开更多
关键词 clay marine algae metal ions ADSORPTION
下载PDF
Studies on Characteristics, Applications and Strength Improvement of Marine Clay: A Review
9
作者 R. Saisubramanian V. Murugaiyan T. Sundararajan 《Journal of Geoscience and Environment Protection》 2019年第1期93-106,共14页
Strength assessment and improvement of strength parameters are essential to design the foundation in clay and marine clay. Several studies have been made in this aspect. Marine clay is also a potential material for us... Strength assessment and improvement of strength parameters are essential to design the foundation in clay and marine clay. Several studies have been made in this aspect. Marine clay is also a potential material for use as liner material to contain landfill leach ate. The applications include use of marine clay for transforming waste into light weight aggregates and thus create better environment. The physical parameters such as Atterberg limits, California Bearing Ratio (CBR) value, dry density, specific gravity, free swell, chemical properties such as pH value, cation exchange capacity, organic matter content, calcium carbonate, and mineralogical composition using X-ray diffraction analysis are studied. The consolidation characteristics, determination of strength improvement strategies using admixtures at different proportions are frequently adopted. Commonly used admixtures are lime, limes mixed with cement, coir, shredded plastics. The consolidation studies are very vital and play an important role. 展开更多
关键词 marine clay CONSOLIDATION CHARACTERISTICS ADMIXTURES AGGREGATES Land FILL
下载PDF
Source and Enrichment Mechanism of Lithium in the Triassic Argillaceous Marine Sediments from Huangjinkou, Sichuan, China 被引量:2
10
作者 QIN Yan WANG Denghong +5 位作者 ZHAO Yue YU Yang GAO Juanqin YU Feng ZHONG Jiaai LIU Zhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期536-545,共10页
In the Triassic marine sediments, an obvious enrichment of lithium has been found. The source and enrichment mechanism of lithium is unknown. Here, we report trace and rare earth element and isotope analyses for Trias... In the Triassic marine sediments, an obvious enrichment of lithium has been found. The source and enrichment mechanism of lithium is unknown. Here, we report trace and rare earth element and isotope analyses for Triassic sedimentary samples from core ZK601, recovered from the Huangjinkou anticline in the Xuanhan basin. Lithium concentrations from the Leikoupo and Jialingjiang formations are much higher than the average concentrations in the crust of eastern China and in other marine sediments. Lithium concentrations are highest at depths of 3300–3360 m(in argillaceous marine sediments), and Li is positively correlated with Rb, Ga, Zr, Nb and other trace elements. The range of δ^(7)Li values in our samples is consistent with that in other Triassic marine carbonate rocks. Lithium concentrations and isotope ratios are negatively correlated in the argillaceous dolomite samples at depths of 3300–3360 m. We compared the results in this study with trace and rare earth elements in the clay from Sichuan and Chongqing, and propose that the clay in the argillaceous marine evaporites from Huangjinkou formed via the hydrolysis of volcanic ash during Early–Middle Triassic volcanic eruptions into brine basins, during which clay adsorbed Li from the brine and formed Li-rich argillaceous dolomites. The addition and hydrolysis of volcanic ash in the evaporative brine is also related to the formation of a new type of polyhalite. 展开更多
关键词 LITHIUM argillaceous marine sediments clay TRIASSIC Xuanhan salt basin
下载PDF
Laboratory Test on Long-Term Deterioration of Cement Soil in Seawater Environment 被引量:8
11
作者 杨俊杰 闫楠 +1 位作者 刘强 张玥宸 《Transactions of Tianjin University》 EI CAS 2016年第2期132-138,共7页
Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on t... Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration extended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentration of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching. 展开更多
关键词 cement soil marine clay deterioration depth micro-cone penetration test seawater environment
下载PDF
Characterization and acid-mobilization study for typical iron- bearing clay mineral 被引量:4
12
作者 Zhenzhen Wang Rui Li +3 位作者 Lulu Cui Hongbo Fu Jun Lin Jianmin Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第9期222-232,共11页
In this study, iron speciation in five standard clay samples was characterized. Iron mobilization from these clays was then measured in acidic media. For comparison, a commercially available Arizona test dust (ATD) ... In this study, iron speciation in five standard clay samples was characterized. Iron mobilization from these clays was then measured in acidic media. For comparison, a commercially available Arizona test dust (ATD) was also observed. The results showed that the free-Fe contents of clays were commonly lower than that of dust aerosols. The components of clays were dominant by the structural Fe held in the aluminosilicate lattice. The iron solubility of the clays were in the order of KGa-2 〉 SWy-2 〉 CCa-2 〉 IMt-2 〉 NAu- 2. Based upon the M6ssbauer spectrum and transmission electron microscopy (TEM) analysis, the Fe(Ⅱ) fraction and the Fe/Si ratio of clay particles changed after dissolution, suggesting the total Fe solubility depended on the Fe atom states existing within the aluminosilicate lattice. The Fe in KGa-2 and SWy-2 was most likely substituted for alkaline elements as the interlayer ions held by ionic bonds in the aluminosilicate, which are more liable to dissolution. However, the Fe in NAu-2 was more likely to be bound by strong covalent bonds in aluminosilicate mineral, which is less soluble. The much highly soluble Fe in ATD was not only linked to the dissolution of an appreciable fraction of Fe(Ⅱ), but also could be attributed to the fact that the Fe bonds in the clay fraction of ATD were mainly present as ionic bonds. The TEM images showed that reacted clay particles displayed less aggregate particles, with nanoparticle aggregates and the Fe/S-rich tiny particles attached to the remains. 展开更多
关键词 clay particles DUST Iron mobilization marine primary productivity
原文传递
Experimental study of water imbibition characteristics of the lacustrine shale in Sichuan Basin
13
作者 Changgui Jia Bo Xiao +2 位作者 Lijun You Yang Zhou Yili Kang 《Petroleum》 EI CSCD 2023年第4期572-578,共7页
Through the stimulation method of large-scale hydraulic fracturing,the spontaneous imbibition capacity of the water phase in the shale reservoir has great influence on the effect of stimulation.Generally,the lacustrin... Through the stimulation method of large-scale hydraulic fracturing,the spontaneous imbibition capacity of the water phase in the shale reservoir has great influence on the effect of stimulation.Generally,the lacustrine shale has the characteristics of high clay minerals content,strong expansibility,development of nanopores and micro-pores,and underdevelopment of fractures,which leads to the unclear behavior of spontaneous imbibition of aqueous phase.The lacustrine shale of Da'anzhai Member and marine shale of Longmaxi Formation in Sichuan Basin were selected to prepare both the shale matrix sample and fractured shale sample,and the spontaneous imbibition experiment of simulated formation water was carried out.By means of an XRD test,SEM observation,nuclear magnetic resonance test and linear expansion rate test,the mineral composition,the structure of pores and fractures,the capacity of hydration and expansion of both lacustrine and marine shale are compared and analyzed.The results show that the average spontaneous imbibition rate of lacustrine shale is 60.8%higher than that of marine shale within the initial 12 hours of imbibition.The lacustrine shale has faster imbibition rate than the marine shale in the initial stage of spontaneous imbibition.However,the lacustrine shale has underdeveloped pores and fractures,as well as poor connectivity of pores.Besides,the strong hydration and expansion of clay minerals can easily lead to dispersion and migration of clay minerals on the fracture surface,which will plug up the seepage channels,resulting in poor capacity of spontaneous imbibition.The spontaneous imbibition rate in the middle and late stage of Lacustrine shale is obviously lower than that of the marine shale.The overall spontaneous imbibition rate ability of the lacustrine shale is less than that of the marine shale.According to the characteristics of water imbibition of lacustrine shale,considering the dual effects of hydration expansion of clay minerals on the effective reconstructed volume,the microfractures can be initiated and extended by fully utilizing the hydration of shale.Acidification treatment,oxidation treatment or high temperature treatment can be used to expand pore space,enhance water phase imbibition capacity and improve multi-scale mass transfer capacity of the lacustrine shale. 展开更多
关键词 Lacustrine shale marine shale Water imbibition clay minerals Hydration expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部