期刊文献+
共找到1,442篇文章
< 1 2 73 >
每页显示 20 50 100
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion 被引量:4
1
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure Shear strength
下载PDF
Using cemented paste backfill to tackle the phosphogypsum stockpile in China:A down-to-earth technology with new vitalities in pollutant retention and CO_(2) abatement 被引量:3
2
作者 Yikai Liu Yunmin Wang Qiusong Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1480-1499,共20页
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w... Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs. 展开更多
关键词 cemented paste backfill PHOSPHOGYPSUM carbon dioxide mitigation potentially toxic elements solidification and stabilization
下载PDF
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
3
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
Research on casing deformation prevention technology based on cementing slurry system optimization
4
作者 Yan Yan Meng Cai +3 位作者 Wen-Hai Ma Xiao-Chuan Zhang Li-Hong Han Yong-Hong Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1231-1240,共10页
The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture ... The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%. 展开更多
关键词 Cement slurry Hollow ceramsite Casing deformation Formation slip Field test
下载PDF
Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement:A Random Forest(RF)Model Hybridized with Modified Beetle Antennae Search(MBAS)for Higher Accuracy
5
作者 Zhou Ji Mengmeng Zhou +1 位作者 Qiang Wang Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1557-1582,共26页
To improve the prediction accuracy of the International Roughness Index(IRI)of Jointed PlainConcrete Pavements(JPCP)and Continuously Reinforced Concrete Pavements(CRCP),a machine learning approach is developed in this... To improve the prediction accuracy of the International Roughness Index(IRI)of Jointed PlainConcrete Pavements(JPCP)and Continuously Reinforced Concrete Pavements(CRCP),a machine learning approach is developed in this study for the modelling,combining an improved Beetle Antennae Search(MBAS)algorithm and Random Forest(RF)model.The 10-fold cross-validation was applied to verify the reliability and accuracy of the model proposed in this study.The importance scores of all input variables on the IRI of JPCP and CRCP were analysed as well.The results by the comparative analysis showed the prediction accuracy of the IRI of the newly developed MBAS and RF hybrid machine learning model(RF-MBAS)in this study is higher,indicated by the RMSE and R values of 0.2732 and 0.9476 for the JPCP as well as the RMSE and R values of 0.1863 and 0.9182 for the CRCP.The accuracy of this obtained result far exceeds that of the IRI prediction model used in the traditional Mechanistic-Empirical Pavement Design Guide(MEPDG),indicating the great potential of this developed model.The importance analysis showed that the IRI of JPCP and CRCP was proportional to the corresponding input variables in this study,including the total joint faulting cumulated per KM(TFAULT),percent subgrade material passing the 0.075-mm Sieve(P_(200))and pavement surface area with flexible and rigid patching(all Severities)(PATCH)which scored higher. 展开更多
关键词 Cement pavement JPCP CRCP RF-MBAS IRI
下载PDF
Calcium Carbonate and Ettringite Induced Efflorescence in CAC-Anhydrite Binary Systems
6
作者 SUN Zixuan CHEN Yuting +6 位作者 XU Linglin LIU Siyu YU Long PAN Feng WANG Chaoqiang WU Kai YANG Zhenghong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1129-1137,共9页
We focused on the efflorescence induced microstructural evolution of ettringite-rich systems prepared with calcium aluminate cement(CAC)and anhydrite.The effects of anhydrite on the visible efflorescence,and the corre... We focused on the efflorescence induced microstructural evolution of ettringite-rich systems prepared with calcium aluminate cement(CAC)and anhydrite.The effects of anhydrite on the visible efflorescence,and the corresponding capillary absorption of CAC-anhydrite mortars were revealed.The composition and microstructure of efflorescence-causing substances were investigated by optical microscope,in-situ Raman spectroscopy,scanning electron microscope,energy dispersive spectrometer,thermogravimetric analysis,and differential scanning calorimetry,at multi-scales.Results indicate that,besides the calcium carbonate,ettringite is another main component of efflorescence-causing substances.Compared with the neat CAC mortars,the addition of anhydrite has a significant effect on the degree of efflorescence by acting on the composition of hydration products and pore structure.In addition,methods are proposed for the prevention of efflorescence of CAC-anhydrite binary system. 展开更多
关键词 calcium aluminate cement ANHYDRITE EFFLORESCENCE ETTRINGITE phase assemblage pore structure
下载PDF
Gadolinium-doped injectable magnesium-calcium phosphate bone cements for noninvasive visualization
7
作者 Polina A.Krokhicheva Margarita A.Goldberg +12 位作者 Alexander S.Fomin Dinara R.Khayrutdinova Olga S.Antonova Margarita A.Sadovnikova Ivan V.Mikheev Aleksander V.Leonov Ekaterina M.Merzlyak Daria A.Kovalishina Suraya A.Akhmedova Natalia S.Sergeeva Marat R.Gafurov Sergey M.Barinov Vladimir S.Komlev 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3698-3716,共19页
Injectable bone cements are used in minimally invasive surgical techniques including vertebroplasty and kyphoplasty.This work is devoted to the development of magnesium-calcium phosphate cements(MCPCs)doped with gadol... Injectable bone cements are used in minimally invasive surgical techniques including vertebroplasty and kyphoplasty.This work is devoted to the development of magnesium-calcium phosphate cements(MCPCs)doped with gadolinium ions(Gd^(3+))for bone defect repair.Interaction between cement powders and a cement liquid resulted in the formation of newberyite and brushite phases,which gave mechanical strength up to 17 MPa without a thermal effect.The introduction of Gd3+into the lattice was confirmed by electron paramagnetic resonance spectroscopy;the doping increased injectivity while giving rise to antibacterial properties against Escherichia coli.Assays of the cement samples soaking in Kokubo’s simulated body fluid revealed the formation of calcium phosphate coatings on the cements’surface.The cements manifested biocompatibility with the MG-63 cell line and significantly enhanced contrast when Gd-MCPC was placed into a bone defect and examined by X-ray micro-computed tomography.For the first time,visualization of a Gd-doped cement material was achieved in a model of a bone defect analyzed by MRI. 展开更多
关键词 Magnesium-calcium phosphate cement GADOLINIUM INJECTIVITY Antibacterial properties CYTOCOMPATIBILITY
下载PDF
Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction
8
作者 Xihao Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2390-2403,共14页
Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative... Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations. 展开更多
关键词 electromagnetic induction steel fiber cemented tailings backfill strength microstructure
下载PDF
Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill:Structure modification,binder properties and environmental assessment
9
作者 Dengfeng Zhao Shiyu Zhang Yingliang Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2136-2147,共12页
The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its... The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders. 展开更多
关键词 cemented paste backfill bio-leaching residue arsenic immobilization binder hydration CALCINATION
下载PDF
Particle aggregation and breakage kinetics in cemented paste backfill
10
作者 Liuhua Yang Hengwei Jia +4 位作者 Aixiang Wu Huazhe Jiao Xinming Chen Yunpeng Kou Mengmeng Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1965-1974,共10页
The macroscopic flow behavior and rheological properties of cemented paste backfill(CPB)are highly impacted by the inherent structure of the paste matrix.In this study,the effects of shear-induced forces and proportio... The macroscopic flow behavior and rheological properties of cemented paste backfill(CPB)are highly impacted by the inherent structure of the paste matrix.In this study,the effects of shear-induced forces and proportioning parameters on the microstructure of fresh CPB were studied.The size evolution and distribution of floc/agglomerate/particles of paste were monitored by focused beam reflection measuring(FBRM)technique,and the influencing factors of aggregation and breakage kinetics of CPB were discussed.The results indicate that influenced by both internal and external factors,the paste kinetics evolution covers the dynamic phase and the stable phase.Increasing the mass content or the cement-tailings ratio can accelerate aggregation kinetics,which is advantageous for the rise of average floc size.Besides,the admixture and high shear can improve breaking kinetics,which is beneficial to reduce the average floc size.The chord length resembles a normal distribution somewhat,with a peak value of approximate 20μm.The particle disaggregation con-stant(k_(2))is positively correlated with the agitation rate,and k_(2) is five orders of magnitude greater than the particle aggregation constant(k1).The kinetics model depicts the evolution law of particles over time quantitatively and provides a theoretical foundation for the micromechanics of complicated rheological behavior of paste. 展开更多
关键词 cemented paste backfill particle kinetics ADMIXTURE rheology
下载PDF
Preparation and Properties of Magnesium Oxysulfide Cement Based Foam Board Absorbing Material
11
作者 刘军 崔宝栋 庞博 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期118-125,共8页
In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium... In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium cement foamed sheet for improvement of electromagnetic industry,this paper uses the excellent microwave absorbing properties of ferrite and the modified sulfur oxide magnesium cement foam board,and discusses the microwave absorbing performance,aiming at improving the electromagnetic pollution in daily life.The effects of ferrite and silicon carbide doping on microwave absorption properties of modified magnesium oxysulfate cement were studied.At the same time,the wave absorbing properties of the corresponding samples were detected by bow method,and the causes of the corresponding phenomena were analyzed by scanning electron microscopy (SEM).The results show that the lowest reflectance of the material is-17.9 dB at 34.1 GHz and the average reflectance of the whole band is-15.9 dB under the target frequency band of 26.5-40 GHz.Under the action of external magnetic field,the absorbing particles are affected by magnetization force,magnetic dipole and resistance coupling,and play the absorbing effect in the cement base solidified completely in the electromagnetic field environment.The lowest reflectance is-17.3dB at 36.4GHz and the average reflectance is-14.3dB for the whole band. 展开更多
关键词 magnesium oxysulfide cement silicon carbide FERRITE absorption properties
下载PDF
Effect of Sodium Tripolyphosphate and Silica Fume on Hydration of High Alumina Cement
12
作者 WANG Jingran YANG Zongyuan +3 位作者 ZHANG Shuai ZHANG Jinhua HAN Bingqiang KE Changming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1246-1252,共7页
It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the co... It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the conversion of CAH_(10)to C_(3)AH_(6).Sodium tripolyphosphate can retard the early hydration of cement,have a slight effect on 1 d hydration products of cement and inhibit the generation hydration products.Sodium tripolyphosphate and silica fume can promote the early hydration of cement,advance the formation of C_(2)ASH_(8)or the conversion from CAH_(10)to C_(3)AH_(6)at 1 d. 展开更多
关键词 high aluminum cement silica fume dispersing agent HYDRATION
下载PDF
Carbonation of Pure Minerals in Portland Cement:Evolution in Products as a Function of Water-to-solid Ratio
13
作者 XIONG Kun SHANG Xiaopeng +1 位作者 LI Hongyan WANG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1214-1222,共9页
Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and prod... Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and product evolution for CO_(2)curing at various water-to-solid ratios.These pure minerals were synthesized and subject to CO_(2)curing in this study to make an in-depth understanding for the carbonation properties of cement-based materials.Results showed that the optimum water-to-solid ratios of C_(3)S,β-C_(2)S,C_(3)A and C_(4)AF were 0.25,0.15,0.30 and 0.40 for carbonation,corresponding to 2 h carbonation degree of 38.5%,38.5%,24.2%,and 21.9%,respectively.The produced calcite duringβ-C_(2)S carbonation decreased as the water-to-solid ratio increased,with an increase in content of metastable CaCO_(3)of vaterite and aragonite.The thermodynamic stability of CaCO_(3)produced during carbonation was C_(3)A>C_(4)AF>β-C_(2)S>C_(3)S.The carbonation degree of Portland cement was predicted based on the results of pure minerals and the composition of cement,and the error of predicted production of CaCO_(3)was only 1.1%,which provides a potential method to predict carbonation properties of systems with a complex mineral composition. 展开更多
关键词 accelerated carbonation portland cement calcium carbonate water-to-solid ratio
下载PDF
Long-Term Performance and Microstructural Characterization of Dam Concrete in the Three Gorges Project
14
作者 Chen Lyu Cheng Yu +3 位作者 Chao Lu Li Pan Wenwei Li Jiaping Liu 《Engineering》 SCIE EI CAS CSCD 2024年第2期237-262,共26页
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ... This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties. 展开更多
关键词 Three Gorges Dam Long-term performance Microstructural analysis Moderate-heat cement Fly ash
下载PDF
Failure Characteristics of Rock-like Mortar Specimens with Arc-shaped Flaws under Freezing-thaw Cycles and Uniaxial Compression
15
作者 LI Yong LI Kunpeng +4 位作者 ZHANG Shaowang YIN Futong WANG Chen DAI Feng WANG Kai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1461-1473,共13页
To investigate the freeze-thaw(F-T)damages and failure characteristics of rock mass with arc-shaped joints in cold regions,three types of cement mortar specimens with different central angles and prefabricated arc-sha... To investigate the freeze-thaw(F-T)damages and failure characteristics of rock mass with arc-shaped joints in cold regions,three types of cement mortar specimens with different central angles and prefabricated arc-shaped flaws are subjected to uniaxial compressive tests under different F-T cycles.Experimental observations show that the uniaxial compressive strength of specimens are significantly influenced by F-T cycles and their failure modes are mainly affected by the central angleαof the prefabricated flaws.Unlike the specimens with a central angle of 60°,the specimens with a central angle of 120°and 180°have greater curvature of flaws,so tensile cracks occur in the arc-top area of their prefabricated flaws.According to experimental images observed by environmental scanning electron microscope(ESEM),as the number of F-T cycles increases,the deterioration effect of the specimen becomes more obvious,which is specifically reflected in the increase of the mass loss,peak stress loss,and damage variables as a power function,and the peak strain decreases as a quadratic polynomial.According to numerical results using two-dimensional particle flow code(PFC2D),it is found that F-T cycles cause more damage to the specimen in the early stages than in the later ones.The area of the concentrated compressive stress zone in the middle is decreased due to the increased number of F-T cycles,while the area of the surrounding tensile-shear stress zone is increased.The models appear different failure modes due to the release of concentrated stress in different tensile-shear zones. 展开更多
关键词 cement mortar material arc-shaped flaws freeze-thaw cycle failure pattern PFC2D
下载PDF
Characteristic and optimization of ferrite-rich sulfoaluminate-based composite cement suitable for cold region tunnels
16
作者 PENG You LI Li +5 位作者 TAN Xian-jun QIU Xin ZHENG Pei-chao XIE Jun CHEN Wei-zhong REZIWANGULI Sha-ta-er 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2794-2809,共16页
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia... To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels. 展开更多
关键词 ferrite-rich sulfoaluminate cement cold zone early strength synergist mechanical property MICRO-STRUCTURE pumped storage power
下载PDF
Thickening progression mechanism of silica fume-oil well cement composite system at high temperatures
17
作者 Hang Zhang Miao-Miao Hu +7 位作者 Peng-Peng Li Guo-Qing Liu Qing-Lu Chang Jie Cao Ming Liu Wen-Hua Xu Xiu-Jian Xia Jin-Tang Guo 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2793-2805,共13页
This work studied the thickening progression mechanism of the silica fume-oil well cement composite system at high temperatures(110-180.C)in order to provide a theoretical guidance for the rational application of sili... This work studied the thickening progression mechanism of the silica fume-oil well cement composite system at high temperatures(110-180.C)in order to provide a theoretical guidance for the rational application of silica fume in the cementing engineering.Results showed that silica fume seldom affected the thickening progression of oil well cement slurry at 110-120.C,but when temperature reached above130.C,it would aggravate the bulging degree of thickening curves and significantly extend the thickening time,meanwhile causing the abnormal“temperature-based thickening time reversal”and“dosage-based thickening time reversal”phenomena in the range of 130-160.C and 170-180.C respectively.At 130-160.C,the thickening time of oil well cement slurry was mainly associated with the generation rate of calcium hydroxide(CH)crystal.The introduced silica fume would be attracted to the cement minerals'surface that were hydrating to produce CH and agglomerate together to form an“adsorptive barrier”to hinder further hydration of the inner cement minerals.This“adsorptive barrier”effect strengthened with the rising temperature which extended the thickening time and caused the occurrence of the“temperature-based thickening time reversal”phenomenon.At 170-180.C,the pozzolanic activity of silica fume significantly enhanced and considerable amount of C-S-H was generated,thus the“temperature-based thickening time reversal”vanished and the“dosage-based thickening time reversal”was presented. 展开更多
关键词 Silica fume Oil well cement Thickening time reversal Pozzolanic reaction Adsorptive barrier CH and C-S-H
下载PDF
Macro-micro behaviors and failure mechanism of frozen weakly cemented mudstone
18
作者 Xianzhou Lyu Jijie Du +2 位作者 Hao Fu Dawei Lyu Weiming Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1337-1347,共11页
Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in c... Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in cold regions.In this study,the triaxial compression test are performed on mudstone in the weakly cemented soft rock strata in the mining area of western China,and the mechanical characteristics and failure mechanism of weakly cemented mudstone are systematically investigated under the combined action of freezing and loading.Furthermore,the quantitative relationship between the microstructural parameters and the macroscopic strength and deformation parameters is established based on fractal theory.Thus,the failure mechanism of frozen weakly cemented mudstone is revealed on both micro- and macro-scales.The results show that temperature and confining pressure significantly affects the elastic modulus and peak strength of weakly cemented mudstone.With decreasing temperature,the compressive strength increases,while the corresponding peak strain decreases gradually.On the deformation curve,the plastic deformation stage is shortened,and the brittle fracture feature at the post-peak stage is more prominent,and the elastic modulus correspondingly increases with decreasing temperature.Under low-temperature conditions,most of the weakly cemented mudstone undergoes microscopic shear failure along the main fracture surface.The micro-fracture morphology characteristics of weakly cemented mudstone under different temperatures are quantified via the fractal dimension,and an approximately exponential relationship can be obtained among the fractal dimension and the temperature,compressive strength and elastic modulus. 展开更多
关键词 Weakly cemented mudstone Artificial freezing Mechanical properties Linkage destruction mechanism Fractal dimension
下载PDF
Preparation and Reinforcement Adaptability of Jute Fiber Reinforced Magnesium Phosphate Cement Based Composite Materials
19
作者 刘芯州 郭远臣 +3 位作者 WANG Rui XIANG Kai WANG Xue YE Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期999-1009,共11页
To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increas... To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated. 展开更多
关键词 magnesium phosphate cement jute fiber reinforcement of damaged beam flexural behavior
下载PDF
Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Nanocrystalline Cemented Carbide
20
作者 陈先富 刘颖 +1 位作者 YE Jinwen WANG Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期664-672,共9页
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi... WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30. 展开更多
关键词 nano nitrogen cemented carbide sintering temperature MICROSTRUCTURE mechanical properties
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部