Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic...Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.展开更多
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n...In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.展开更多
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th...Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.展开更多
The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships bet...The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion.展开更多
Real estate is the "barometer" of the national economy, this paper studies the formation of the current domestic real estate prices and the inner mechanism of the influence factors, using the principal component ana...Real estate is the "barometer" of the national economy, this paper studies the formation of the current domestic real estate prices and the inner mechanism of the influence factors, using the principal component analysis to determine the composition of the real estate market development index model, and the BP neural network model is established, with specific data analysis which verifies the correctness and practicability of the model.展开更多
The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors ...The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors of the pulse signal. Then the method of nondimensionalization/normalization on the pulse signal is presented to preprocess the characteristic factors. The classification of the pulse signal and the effects of the selection of characteristic factors are studied by using the normalized data and BP neural network. It is shown that nondimensionalization/normalization of the data is in favor of the training and forecasting of the network. The selection of characteristic factors affects the accuracy of forecasting obviously. The results of forecasting by selection of 8, 6 and 4 factors respectively show that the less the factors are, the worse the effects are.展开更多
Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is une...Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is uneven. It is of great significance to establish a general evaluation system for the development of global education. In this paper, 23 indicators are preliminarily selected from the education data of Universitas 21 and Global Statistical Yearbook. After the gray correlation analysis, 12 indicators were selected. On the one hand, principal component analysis is used to reduce the dimension of these 12 indicators in 50 countries, and the first four principal components with cumulative contribution rate of 99% are finally selected as the input parameters of BP neural network. On the other hand, 12 indicators are divided into four aspects as the standard of scheme decision-making. Finally, a higher education quality evaluation and decision-making model based on BP neural network and analytic hierarchy process are established. Then eight countries are selected to use the model to evaluate their current higher education quality. Based on the input and evaluation results of the four aspects of higher education in various countries, the analytic hierarchy process is used to make program decision, and several improvement suggestions are put forward for the current education policies of various countries.展开更多
This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optical...This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optically measuring the eight geometry-related parameters from the given particle image. To simplify the network structure, principal component analysis technique is applied to reduce the input dimension. The specific network structure is finalized based on both empirical expertise and analysis on selecting the appropriate number of neurons in hidden layer. The network is trained using the finite number of randomly-picked particles. The training and test results suggest that, compared to the generic BP network, the training duration of the proposed neural network is greatly attenuated, the complexity of the network structure is largely reduced, and the estimation precision is within 2%, being sufficiently up to technical satisfaction.展开更多
In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, ...In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method.展开更多
为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标...为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。展开更多
基金supported by the National Natural Science Foundation of China (No.50609028)
文摘Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.
文摘In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.
基金This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB520028)the Collaborative Innovation Center of Jiangsu Maritime Institute。
文摘Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.
文摘The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion.
文摘Real estate is the "barometer" of the national economy, this paper studies the formation of the current domestic real estate prices and the inner mechanism of the influence factors, using the principal component analysis to determine the composition of the real estate market development index model, and the BP neural network model is established, with specific data analysis which verifies the correctness and practicability of the model.
文摘The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors of the pulse signal. Then the method of nondimensionalization/normalization on the pulse signal is presented to preprocess the characteristic factors. The classification of the pulse signal and the effects of the selection of characteristic factors are studied by using the normalized data and BP neural network. It is shown that nondimensionalization/normalization of the data is in favor of the training and forecasting of the network. The selection of characteristic factors affects the accuracy of forecasting obviously. The results of forecasting by selection of 8, 6 and 4 factors respectively show that the less the factors are, the worse the effects are.
文摘Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is uneven. It is of great significance to establish a general evaluation system for the development of global education. In this paper, 23 indicators are preliminarily selected from the education data of Universitas 21 and Global Statistical Yearbook. After the gray correlation analysis, 12 indicators were selected. On the one hand, principal component analysis is used to reduce the dimension of these 12 indicators in 50 countries, and the first four principal components with cumulative contribution rate of 99% are finally selected as the input parameters of BP neural network. On the other hand, 12 indicators are divided into four aspects as the standard of scheme decision-making. Finally, a higher education quality evaluation and decision-making model based on BP neural network and analytic hierarchy process are established. Then eight countries are selected to use the model to evaluate their current higher education quality. Based on the input and evaluation results of the four aspects of higher education in various countries, the analytic hierarchy process is used to make program decision, and several improvement suggestions are put forward for the current education policies of various countries.
基金Funded by Ningbo Natural Science Foundation (No. 2006A610016)Foundation of National Education Ministry for Returned Overseas Chinese Students & Scholars (SRF for ROCS, SEM. No.2006699)
文摘This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optically measuring the eight geometry-related parameters from the given particle image. To simplify the network structure, principal component analysis technique is applied to reduce the input dimension. The specific network structure is finalized based on both empirical expertise and analysis on selecting the appropriate number of neurons in hidden layer. The network is trained using the finite number of randomly-picked particles. The training and test results suggest that, compared to the generic BP network, the training duration of the proposed neural network is greatly attenuated, the complexity of the network structure is largely reduced, and the estimation precision is within 2%, being sufficiently up to technical satisfaction.
基金Supported by National Outstanding Youth Science Foundation of China(No.41025015)the National Natural Science Foundation of China(No.41274109)Sichuan Youth Science and Technology Innovation Research Team(No.2011JTD0013)
文摘In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method.
文摘为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。