In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
高压直流输电(high voltage direct current,HVDC)附加控制可以提高交直流系统的稳定性,但由直流简化模型引起的误差、信号时滞及各种干扰给附加控制器的设计增加了需要考虑的不确定因素。为克服不确定因素的影响以提高交直流系统的稳...高压直流输电(high voltage direct current,HVDC)附加控制可以提高交直流系统的稳定性,但由直流简化模型引起的误差、信号时滞及各种干扰给附加控制器的设计增加了需要考虑的不确定因素。为克服不确定因素的影响以提高交直流系统的稳定性水平,提出一种HVDC广域鲁棒控制器(wide area robust controller,WARC)设计方法。首先根据区域惯量中心的运动方程和滑模控制设计方法确定滑模切换面,然后利用李雅普诺夫稳定性定理保证系统在不确定因素存在的情况下渐近稳定。分别以交直流并联系统和多馈入系统为例,通过PSCAD/EMTDC的时域仿真将WARC与传统极点配置及PID控制方法相比较,时域仿真结果和区间振荡模式分析均表明所提WARC能有效提高系统稳定性,且比传统控制方法性能优越。展开更多
As power systems experience increased wind penetration,an effective analysis and assessment of the influence of wind energy on power system transient stability is required.This paper presents a novel center of inertia...As power systems experience increased wind penetration,an effective analysis and assessment of the influence of wind energy on power system transient stability is required.This paper presents a novel center of inertia(COI)approach to understand how integrated doubly fed induction generators(DFIGs)affect the transient dynamics of a power system.Under the COI coordinate,the influence of integrated DFIGs is separated into the COI related and individual synchronous generator related parts.Key factors that affect the COI’s dynamic motion as well as the rotor dynamics of each individual synchronous generator with respect to the DFIG integration are investigated.To further validate the analysis,comparative simulations of three different scenarios with varying DFIG capacities,access locations,and the replacement of synchronous generators are conducted.The results show that the dynamics of the COI and the individual generators are affected by the integrated DFIGs via different mechanisms,and are sensitive to different variables in the DFIG’s integration condition.展开更多
含附加频率控制的风电机组可响应电力系统的动态行为,同时也对系统的动态特性存在影响。首先基于惯性中心等效理论(center of inertia,COI),分析了大规模含附加频率控制系统双馈风电机组接入电网后,系统暂态特性的变化,并推导了惯性中...含附加频率控制的风电机组可响应电力系统的动态行为,同时也对系统的动态特性存在影响。首先基于惯性中心等效理论(center of inertia,COI),分析了大规模含附加频率控制系统双馈风电机组接入电网后,系统暂态特性的变化,并推导了惯性中心同步机转子运动方程;其次基于双馈风电机组自身运行特性,分析了其运行极限与运行模式对响应系统动态行为能力的影响;将上述分析结合得出含附加频率控制系统双馈风机对系统暂态稳定性影响的关键因素。最后在电力系统综合程序PSASP中,搭建接入双馈风机的IEEE-3机9节点电力系统模型,验证上述结论的正确性。展开更多
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
文摘高压直流输电(high voltage direct current,HVDC)附加控制可以提高交直流系统的稳定性,但由直流简化模型引起的误差、信号时滞及各种干扰给附加控制器的设计增加了需要考虑的不确定因素。为克服不确定因素的影响以提高交直流系统的稳定性水平,提出一种HVDC广域鲁棒控制器(wide area robust controller,WARC)设计方法。首先根据区域惯量中心的运动方程和滑模控制设计方法确定滑模切换面,然后利用李雅普诺夫稳定性定理保证系统在不确定因素存在的情况下渐近稳定。分别以交直流并联系统和多馈入系统为例,通过PSCAD/EMTDC的时域仿真将WARC与传统极点配置及PID控制方法相比较,时域仿真结果和区间振荡模式分析均表明所提WARC能有效提高系统稳定性,且比传统控制方法性能优越。
基金supported in part by the Major Program of the National Natural Science Foundation of China under Grant 51190103the National High Technology Research and Development Program of China under Grant 2012AA050208.
文摘As power systems experience increased wind penetration,an effective analysis and assessment of the influence of wind energy on power system transient stability is required.This paper presents a novel center of inertia(COI)approach to understand how integrated doubly fed induction generators(DFIGs)affect the transient dynamics of a power system.Under the COI coordinate,the influence of integrated DFIGs is separated into the COI related and individual synchronous generator related parts.Key factors that affect the COI’s dynamic motion as well as the rotor dynamics of each individual synchronous generator with respect to the DFIG integration are investigated.To further validate the analysis,comparative simulations of three different scenarios with varying DFIG capacities,access locations,and the replacement of synchronous generators are conducted.The results show that the dynamics of the COI and the individual generators are affected by the integrated DFIGs via different mechanisms,and are sensitive to different variables in the DFIG’s integration condition.
文摘含附加频率控制的风电机组可响应电力系统的动态行为,同时也对系统的动态特性存在影响。首先基于惯性中心等效理论(center of inertia,COI),分析了大规模含附加频率控制系统双馈风电机组接入电网后,系统暂态特性的变化,并推导了惯性中心同步机转子运动方程;其次基于双馈风电机组自身运行特性,分析了其运行极限与运行模式对响应系统动态行为能力的影响;将上述分析结合得出含附加频率控制系统双馈风机对系统暂态稳定性影响的关键因素。最后在电力系统综合程序PSASP中,搭建接入双馈风机的IEEE-3机9节点电力系统模型,验证上述结论的正确性。