期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
New Evidence of Detrital Zircon Ages for the Final Closure Time of the Paleo-Asian Ocean in the Eastern Central Asian Orogenic Belt(NE China) 被引量:4
1
作者 DU Qingxiang HAN Zuozhen +6 位作者 SHEN Xiaoli HAN Chao SONG Zhigang GAO Lihua HAN Mei ZHONG Wenjian YAN Junlei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1910-1914,共5页
Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches ha... Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches have discussed about the evolution of the Paleo-Asian Ocean(PAO)in the eastern CAOB.However, 展开更多
关键词 Th NE China New Evidence of Detrital Zircon Ages for the Final Closure Time of the Paleo-asian Ocean in the Eastern central asian orogenic belt OHS NCC Pb
下载PDF
Permian Tectonic Evolution in the Middle Part of Central Asian Orogenic Belt: Evidence from Newly Identified Volcanic Rocks in the Bilutu Area, Inner Mongolia 被引量:3
2
作者 WANG Shijie LIU Yang +5 位作者 DONG Xiaojie XU Zhongyuan WANG Wenlong LI Shichao SHI Qiang CUI Weilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1281-1299,共19页
In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which c... In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision. 展开更多
关键词 PERMIAN volcanic rocks Bilutu Bainaimiao Arc belt North China Block central asian orogenic belt
下载PDF
Geochemistry,geochronology and Hf isotope of granitoids in the northern Alxa region:Implications for the Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt 被引量:3
3
作者 Xiaochen Zhao Chiyang Liu +2 位作者 Jianqiang Wang Shaohua Zhang Yuzhao Guan 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1711-1725,共15页
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this... The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variableεHf(t)values from-1.0 to+1.3 and old TDM2 ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative eHf(t)values between-1.1 to+5.7(three grains are negative)with two-stage model ages(TDM2)of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their highεHf(t)values(+11.6 to+14.1)and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt. 展开更多
关键词 GEOCHEMISTRY U–Pb geochronology Hf isotopic composition GRANITOIDS Northern Alxa region central asian orogenic belt
下载PDF
Geochemical and Petrological Studies on the Early Carboniferous Sidingheishan Mafic-Ultramafic Iintrusion in the Southern Margin of the Central Asian Orogenic Belt,NW China 被引量:3
4
作者 SUN Tao QIAN Zhuangzhi +5 位作者 THAKURTA Joyashish YANG Shenghong XU Gang DUAN Jun GAO Bo WANG Jing 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期952-971,共20页
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of Chi... The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The εNd(t) values in the rock units vary from +6.70 to +9.64, and initial87Sr/86Sr ratios range between 0.7035 and0.7042. Initial206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)PMvalues between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)PMratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab. 展开更多
关键词 break-off of subducted slab zircon U-Pb dating whole-rock Sr-Nd-Pb isotopes mafic-ultramafic intrusion southern margin of central asian orogenic belt China
下载PDF
Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China 被引量:3
5
作者 Yong-fei Ma Yong-jiang Liu +5 位作者 AYuPeskov Yan Wang Wei-min Song Yu-jin Zhang Cheng Qian Tong-jun Liu 《China Geology》 CAS 2022年第4期555-578,共24页
The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this be... The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia. 展开更多
关键词 Eastern central asian orogenic belt Paleo-asian Ocean Continental growth Soft collision Accretionary orogenic belt PALEOZOIC Tectonic evolution Geological survey engineering NE China Siberia
下载PDF
First Report of Zircon U-Pb Ages from Lubei Cu-Ni Sulfide Deposit in East Tianshan of Central Asian Orogenic Belt, NW China 被引量:3
6
作者 LI Ping ZHAO Tongyang +2 位作者 ZHU Zhixin TIAN Jiangtao LI Dahai 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期855-856,共2页
Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Hu... Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan. 展开更多
关键词 PB First Report of Zircon U-Pb Ages from Lubei Cu-Ni Sulfide Deposit in East Tianshan of central asian orogenic belt NW China Cu NI
下载PDF
Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt 被引量:20
7
作者 Wenjiao Xiao Min Sun M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第2期137-140,共4页
Continental reconstructions in Central Asia are represented by orogenesis along some large orogenic belts in the Altaid collage (Fig. 1 ) or Central Asian Orogenic Belt (CAOB), which separate the East European and... Continental reconstructions in Central Asia are represented by orogenesis along some large orogenic belts in the Altaid collage (Fig. 1 ) or Central Asian Orogenic Belt (CAOB), which separate the East European and Siberian cratons to the north from the Tarim and North China cratons to the south ($eng0r et al,, 1993; Jahn et al., 2004; Windley et al., 2007; Qu et al., 2008; Xiao et al., 2010; Xiao and Santosh, 2014). The Altaid Collage was characterized by complex long tectonic and structural evolution from at least ca. 1.0 Ga to late Paleozoic-early Mesozoic with considerable continental growth (Khain et al., 2002; Jahn et al., 2004; Xiao et al., 2009, 2014; KrOner et al., 2014), followed by Cenozoic intracontinental evolution related to far-field effect of the collision of the In- dian Plate to the Eurasian Accompanying with these complex world-class ore deposits developed 2001; Goldfarb et al., 2003, 2014). Plate (Cunningham, 2005). geodynamic evolutions, many (Qin, 2000; Yakubchuk et al,2001; Goldfarb et al., 2003, 2014). 展开更多
关键词 Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern central asian orogenic belt
下载PDF
Convergence History of the Songliao and Jiamusi Blocks in the Eastern End of Central Asian Orogenic Belt: Evidence from Detrital Zircons of Late Paleozoic Sedimentary Rocks 被引量:2
8
作者 CHEN Zhaoxu LIU Yongjiang GUAN Qingbin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1417-1433,共17页
Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectoni... Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290-300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420-440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic. 展开更多
关键词 Detrital zircon Permian stratum Jiamusi Block Songliao Block central asian orogenic belt
下载PDF
Constructing the latest Neoproterozoic to Early Paleozoic multiple crust-mantle interactions in western Bainaimiao arc terrane,southeastern Central Asian Orogenic Belt 被引量:2
9
作者 Min Liu Shaocong Lai +4 位作者 Da Zhang Renzhi Zhu Jiangfeng Qin Guangqiang Xiong Haoran Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1727-1742,共16页
Identifying the crust-mantle interactions in association with the evolution of the Precambrian microcontinents provides critical constraints on the accretionary evolution in the Central Asian Orogenic Belt(CAOB).The B... Identifying the crust-mantle interactions in association with the evolution of the Precambrian microcontinents provides critical constraints on the accretionary evolution in the Central Asian Orogenic Belt(CAOB).The Bainaimiao arc terrane(BAT)is one of the most important Precambrian microcontinents in southeastern CAOB,however,few studies have paid attention to the types and the evolving processes of the crust-mantle interactions that occurred before its final accretion onto the northern North China Craton.This study presents an integrated study of geochronology,zircon Hf isotope and whole-rock geochemistry on the latest Neoproterozoic diabases and the Early Paleozoic arc intrusions in the western BAT.The latest Neoproterozoic(ca.546 Ma)diabases display low SiO2(46.52-49.24 wt.%)with high MgO(8.23-14.41 wt.%),Cr(66-542 ppm)and Ni(50-129 ppm),consisting with mantle origin.Their highly negative zirconεHf(t)(-12.0 to-24.7)and high Fe/Mn ratios(62.1-81.7)further indicate a significantly enriched mantle source.Considering that the BAT maybe initially separated from the Tarim Craton with a thickened crustal root,we propose that these diabases were generated through partial melting of an enriched lithospheric mantle source that had been hybridized by lower-crustal eclogites during foundering of the BAT lower crust.The Early Paleozoic(ca.475-417 Ma)arc intrusions in western BAT can be divided into PeriodsⅠandⅡat approximately 450 Ma.The PeriodⅠ(>450 Ma)intrusions contain abundant mafic minerals like hornblende and pyroxene,and show positive zirconεHf(t)(+1.5 to+10.9).They are predominantly medium-K calc-alkaline with broad correlations of SiO2 versus various major and trace elements,which correlate well with the experimental melts produced by the fractional crystallization of primitive hydrous arc magmas at 7 kbar.We assume they were formed through mid-crustal differentiation of the mantle wedge-derived hydrous basaltic melts.By contrast,the PeriodⅡ(≤450 Ma)intrusions are characterized by variable zircon eHf(t)(-15.0 to+11.5)with irregular variations in most major and trace elements,which are more akin to the arc magmas generated in an open system.The general occurrence of elder inherited zircons,along with the relatively high Mg#(>45)of some samples,call upon a derivation from the reworking of the previously subduction-modified BAT lower crust with the input of mantle-derived mafic components.In combination with the Early Paleozoic tectonic melanges flanking western BAT,we infer that the compositional transition from PeriodⅠtoⅡcan be attributed to the tectonic transition from south-dipping subduction of Solonker ocean to north-dipping subduction of South Bainaimiao ocean in southeastern CAOB.The above results shed light not only on the latest Neoproterozoic to Early Paleozoic multiple crust-mantle interactions in western BAT,but also on the associated crustal construction processes before the final arc-continent accretion. 展开更多
关键词 Zircon Hf isotope Microcontinent Crust-mantle interaction Arc intrusions central asian orogenic belt
下载PDF
Large-scale thrusting at the northern Junggar Basin since Cretaceous and its implications for the rejuvenation of the Central Asian Orogenic Belt 被引量:8
10
作者 Jieyun Tang Dengfa He +1 位作者 Di Li Delong Ma 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第2期227-246,共20页
The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Ceno... The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic-Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic-Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous-Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed. 展开更多
关键词 Mesozoic-Cenozoic Thrust reactivity Wulungu depression central asian orogenic belt (CAOB)
下载PDF
Forming Proterozoic basement within eastern Central Asian Orogenic Belt:Evidence from zircon U-Pb-Hf-O isotopes 被引量:1
11
作者 WANG Zhi-wei ZHU Tai-chang +1 位作者 YU Jing-wen YUAN Ling-ling 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3088-3105,共18页
As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, t... As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U-Pb ages and Hf-O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450-1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2-1.0 Ga reworking and 0.9-0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB. 展开更多
关键词 PROTEROZOIC central asian orogenic belt Xing’an-Airgin Sum Block crystalline basement GRANITOIDS zircon U-Pb-Hf-O isotopes
下载PDF
Petrogenesis of Early Permian Intrusive Rocks from Southeastern Inner Mongolia, China: Constraints on the Tectonic Framework of the Southeastern Central Asian Orogenic Belt 被引量:1
12
作者 QIAN Cheng LU Lu +4 位作者 SHI Lu DU Jiyu WANG Yan YANG Xiaoping ZHANG Yujin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1566-1586,共21页
The late Paleozoic tectonic framework of the southeastern Central Asian Orogenic Belt is key to restricting the accretion orogeny between the Siberia Craton and the North China Craton. To clarify the framework, petrog... The late Paleozoic tectonic framework of the southeastern Central Asian Orogenic Belt is key to restricting the accretion orogeny between the Siberia Craton and the North China Craton. To clarify the framework, petrogenesis of early Permian intrusive rocks from southeastern Inner Mongolia was studied. Zircon U-Pb dating for bojite and syenogranite from Ar-Horqin indicate that they were emplaced at 288–285 Ma. Geochemical data reveal that the bojite is highly magnesian and low-K to middle-K calc-alkaline, with E-MORB-type REE and IAB-like trace element patterns. The syenogranite is a middle-K calc-alkaline fractionated A-type granite and shows oceanic-arc-like trace element patterns, with depleted Sr-Nd-Hf isotopes,(~(87)Sr/~(86)Sr)I = 0.7032–0.7042, ε_(Nd)(t) = +4.0 to +6.6 and zircon ε_(Hf)(t) = +11.14 to +14.99. This suggests that the bojite was derived from lithospheric mantle metasomatized by subducted slab melt, while the syenogranite originated from very juvenile arc-related lower crust. Usng data from coeval magmatic rocks from Linxi-Ar-Horqin, the Ar-Horqin intra-oceanic arc was reconstructed, i.e., initial transition in 290–280 Ma and mature after 278 Ma. Combined with regional geological and geophysical materials in southeastern Inner Mongolia, an early Permian tectonic framework as ‘one narrow ocean basin of the PAO', ‘two continental marginal arcs on its northern and southern' and ‘one intra-oceanic arc in its southern' is proposed. 展开更多
关键词 tectonic framework early Permian intra-oceanic arc southeastern Inner Mongolia central asian orogenic belt
下载PDF
Detrital zircon constraints on late Paleozoic tectonism of the Bogda region(NW China)in the southern Central Asian Orogenic Belt 被引量:1
13
作者 Qian Wang Guochun Zhao +1 位作者 Yigui Han Jinlong Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1533-1548,共16页
The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses... The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. 展开更多
关键词 North Tianshan Detrital zircon Sedimentary provenance Late Paleozoic central asian orogenic belt
下载PDF
Early Paleozoic geodynamic evolution of the Eastern Central Asian Orogenic Belt: Insights from granitoids in the Xing’an and Songnen blocks 被引量:1
14
作者 Xin-Lu Hu Shu-Zhen Yao +3 位作者 Cheng-Yin Tan Guo-Ping Zeng Zhen-Ju Ding Mou-Chun He 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期1975-1992,共18页
The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt(CAOB)is poorly understood.Here we present zircon U-Pb geochronology,whole rock geochemistry,and Sr-NdHf isotop... The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt(CAOB)is poorly understood.Here we present zircon U-Pb geochronology,whole rock geochemistry,and Sr-NdHf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U-Pb ages of 523-490 Ma,negative εNd(t)values of-6.7 to-0.8,and values of-8.6 to 7.1,indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution.They generally show affinities to A-type granites,implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks.In comparison,the early Paleozoic granitoids from the Xing’an Block have zircon U-Pb ages of 480-465 Ma,εNd(t)values of-5.4 to 5.4,andεHf(t)values of-2.2 to 12.9,indicating a dominated juvenile crustal source with some input of ancient crustal components.They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean.The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement,while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations,the early Paleozoic evolutionary history of eastern GAOB can be divided into four stages:(1)before 540 Ma,the Erguna,Xing’an,Songnen,and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean;(2)540-523 Ma,the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture;(3)ca.500 Ma,the Erguna Block accreted onto the Xing’an Block along the Xinlin-Xiguitu suture;(4)ca.480 Ma,the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna-Xing’an and Songnen-Jiamusi blocks. 展开更多
关键词 Early Paleozoic U–Pb geochronology Sr-Nd-Hf isotopes NE China central asian orogenic belt
下载PDF
SHRIMP Zircon U-Pb Age of the Sidingheishan Mafic-Ultramafic Intrusion in the Southern Margin of the Central Asian Orogenic Belt,NW China and its Petrogenesis implication
15
作者 SUN Tao QIAN Zhuangzhi +3 位作者 XU Gang DUAN Jun LI Wanting ZHANG Aiping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1155-1156,共2页
Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to ... Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to assess mantle source characteristics and crustal assimilation of the parental magma of the Sidingheishan intrusion. We have also discussed the tectonic evolution of the southern margin of the Central Asian Orogenic belt in the Late Paleozoic. 展开更多
关键词 PB TH from SHRIMP Zircon U-Pb Age of the Sidingheishan Mafic-Ultramafic Intrusion in the Southern Margin of the central asian orogenic belt of in
下载PDF
Diamonds, Super-Reduced and Crustal Minerals in Chromitites of the Hegenshan and Sartohay Ophiolites, Central Asian Orogenic Belt, China
16
作者 Paul T.ROBINSON YANG Jingsui +1 位作者 TIAN Yazhou ZHU Huang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期32-,共1页
The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamor... The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamorphic rocks,suture zones and discontinuous ophiolite belts.Although the Hegenshan and Sartohay ophiolites are separated by nearly 3000 km and lie in completely different parts of the CAOB,they are remarkably similar in many respects.Both are composed mainly of serpentinized peridotite and dunite,with minor gabbro and sparse basalt.They both host significant podiform chromitites that consist of high-Al,refractory magnesiochromite with Cr#s[100Cr/(Cr+Al)]averaging<60.The Sartohay ophiolite has a zircon U-Pb age of ca.300 Ma and has been intruded by granitic plutons of similar age,resulting in intense hydrothermal activity and the formation of gold-bearing listwanites.The age of the Hegenshan is not firmly established but is thought to have formed in the Carboniferous.Like many other ophiolites that we have investigated in other orogenic belts,the chromitites in these two bodieshave abundant diamonds,as well as numerous super-reduced and crustal minerals.The diamonds are mostly,colorless to pale yellow,200-300μm across and have euhedral to anhedral shapes.They all have low carbon isotopes(δ14C=-18 to-29)and some have visible inclusions.These are accompanied by numerous super-reduced minerals such as moissanite,native elements(Fe,Cr,Si,Al,Mn),and alloys(e.g.,Ni-Mn-Fe,Ni-Fe-Al,Ni-Mn-Co,Cr-Ni-Fe,Cr-Fe,Cr-Fe-Mn),as well as a wide range of oxides,sulfides and silicates.Grains of zircon are abundant in the chromitites of both ophiolites and range in age from Precambrian to Cretaceous,reflecting both incorporation of old zircons and modification of grains by hydrothermal alteration.Our investigation confirms that high-Al,refractory chromitites in these two ophiolites have the same range of exotic minerals as high-Cr metallurgical chromitites such as those in the Luobusa ophiolite of Tibet.These collections of exotic minerals in ophiolitic chromitites indicate complex,multi-stage recycling of oceanic and continental crustal material at least to the mantle transition zone,followed by uprise and emplacement of the peridotites into relatively shallow ophiolites. 展开更多
关键词 CR China Diamonds Super-Reduced and Crustal Minerals in Chromitites of the Hegenshan and Sartohay Ophiolites central asian orogenic belt
下载PDF
The Central Asian Orogenic Belt:Geology,Evolution,Tectonicsand Models
17
作者 Karel Schulmann 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期411-412,共2页
This book consists of papers providing the geology of remote regions covering the boundary areas of Russia,Kazakhstan,Kyrgyzstan,Mongolia and China,which were inaccessible for a long time due to political and logistic... This book consists of papers providing the geology of remote regions covering the boundary areas of Russia,Kazakhstan,Kyrgyzstan,Mongolia and China,which were inaccessible for a long time due to political and logistical reasons.Consequently,these critical regions remained not well integrated in largescale geodynamic models of the Central Asian Orogenic Belt(CAOB). 展开更多
关键词 The central asian orogenic belt
下载PDF
Permian tectonic evolution and continental accretion in the eastern Central Asian Orogenic Belt:A perspective from the intrusive rocks
18
作者 Anzong Fu Hongyan Geng +4 位作者 Changzhou Deng Chenglu Li Jishuang Ding Bizheng Yang Wenpeng Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期433-451,共19页
The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of t... The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of the eastern CAOB to constrain the tectonic evolution and continental accretion of this region during the late-stage evolution of the Paleo-Asian Ocean.Our new data show that Early Permian gabbro-diorites were derived from the partial melting of depleted mantle metasomatized by oceanic-slab-released fluids.Middle Permian adakitic granites have low Na2O and MgO and high K2O contents,indicating a thickened-lower-crust source.Late Permian S-type granites were derived from the partial melting of continental crust.A compilation of the available geochronological data for Permian intrusive rocks(including adakitic and A-,S-,and I-type granites and mafic rocks)from the eastern CAOB reveals that the A-type granites formed mainly during the Early–Middle Permian,S-type and adakitic granites mostly during the Middle–Late Permian,and I-type granites and mantle-derived mafic rocks throughout the Permian.The A-type granites,which are proposed to have been sourced from thinned continental crust,indicate an extensional setting in the eastern CAOB during the Early Permian.The Middle–Late Permian adakitic granites imply a thickened continental crust,which indicates a compressional setting.Therefore,the eastern CAOB underwent a transition from extension to compression during the Middle Permian,which was probably triggered by the late-stage subduction of Paleo-Asian oceanic crust.Considering the petrogenesis of the intrusive rocks and inferred regional tectonic evolution of the eastern CAOB,we propose that vertical underplating of mantle-and oceanic-slabderived magmas contributed the materials for continental crust accretion. 展开更多
关键词 PERMIAN Intrusive rocks Eastern central asian orogenic belt Paleo-asian Ocean Tectonic evolution
原文传递
Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia 被引量:5
19
作者 Heng Peng Jianqiang Wang +5 位作者 Chiyang Liu Shaohua Zhang Yazhuo Niu Tianbing Zhang Bo Song Wei Han 《Journal of Earth Science》 SCIE CAS CSCD 2023年第1期37-53,共17页
Mesozoic intracontinental orogeny and deformation were widespread within the southern Central Asian Orogenic Belt(CAOB). Chronological constraints remain unclear when assessing the Mesozoic evolution of the central se... Mesozoic intracontinental orogeny and deformation were widespread within the southern Central Asian Orogenic Belt(CAOB). Chronological constraints remain unclear when assessing the Mesozoic evolution of the central segment of this region. The tectonic belt of Shalazha Mountain located in the center of this region is an ideal place to decode the deformation process. Apatite fission-track(AFT) thermochronology in Shalazha Mountain is applied to constrain the Mesozoic tectonothermal evolution of the central segment of southern CAOB. The bedrock AFT ages range from 161.8 ± 6.9 to 137.0 ± 7.3 Ma, and the first reported detrital AFT obtained from Lower Cretaceous strata shows three age peaks: P1(ca. 178 Ma), P2(ca. 149 Ma) and P3(ca. 105.6 Ma). Bedrock thermal history modeling indicates that Shalazha Mountain have experienced three stages of differential cooling: Late Triassic–Early Jurassic(~230–174 Ma), Late Jurassic–Earliest Cretaceous(~174–135 Ma) and later(~135 Ma). The first two cooling stages are well preserved by the detrital AFT thermochronological result(P1, P2) from the adjacent Lower Cretaceous strata, while P3(ca. 105.6 Ma) records coeval volcanic activity. Furthermore, our data uncover that hanging wall samples cooled faster between the Late Triassic and the Early Cretaceous than those from the footwall of Shalazha thrust fault, which synchronizes with the cooling of the Shalazha Mountain and implies significant two-stage thrust fault activation between ca. 230 and 135 Ma. These new low-temperature thermochronological results from the Shalazha Mountain region and nearby reveal three main phases of differential tectonothermal events representing the Mesozoic reactivation of the central segment of the southern CAOB. In our interpretations, the initial rapid uplift in the Late Triassic was possibly associated with intracontinental orogenesis of the CAOB. Subsequent Middle Jurassic–Earliest Cretaceous cooling is highly consistent with the Mesozoic intense intraplate compression that occurred in the southern CAOB, and is interpreted as a record of closure of the Mongol-Okhotsk Ocean. Then widespread Cretaceous denudation and burial in the adjacent fault basin could be linked with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, creating a northeast-trending normal fault and synchronous extension. However, our AFT thermochronometry detects no intense Cenozoic reactivation information of Shalazha Mountain region. 展开更多
关键词 intracontinental deformation Shalazha Mountain southern central asian orogenic belt APATITE apatite fission-track thermal history modeling EXHUMATION
原文传递
Yanshanian–Himalayan geodynamic transformation of the northwestern Junggar Basin, southwestern Central Asian Orogenic Belt (CAOB), and its significance for petroleum accumulation
20
作者 Dongming Zhi Jingkun Zhang +4 位作者 Tao Wu Anbin Wu Yong Tang Yin Liu Jian Cao 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第4期220-229,共10页
The northwestern Junggar Basin in the southwestern Central Asian Orogenic Belt is a typical petroliferous basin.The widely distributed reservoirs in Jurassic–Cretaceous strata indicate that the region records Yanshan... The northwestern Junggar Basin in the southwestern Central Asian Orogenic Belt is a typical petroliferous basin.The widely distributed reservoirs in Jurassic–Cretaceous strata indicate that the region records Yanshanian–Himalayan tectonic activity,which affected the accumulation and distribution of petroleum.The mechanism of this effect,however,has not been fully explored.To fill the knowledge gap,we studied the structural geology and geochemistry of the well-exposed Wuerhe bitumen deposit.Our results indi-cate that deformation and hydrocarbon accumulation in the northwestern Junggar Basin during the Yanshanian–Himalayan geodynamic transformation involved two main stages.During the Yanshanian orogeny,a high-angle extensional fault system formed in Jurassic–Cretaceous strata at intermediate to shallow depths owing to dextral shear deformation in the orogenic belt.This fault system connected at depth with the Permian–Triassic oil–gas system,resulting in oil ascending to form fault-controlled reservoirs(e.g.,a veined bitumen deposit).During the Himalayan orogeny,this fault system was deacti-vated owing to sinistral shear caused by far-field stress related to uplift of the Tibetan Plateau.This and the reservoir densification caused by cementation formed favorable hydrocarbon preservation and accu-mulation conditions.Therefore,the secondary oil reservoirs that formed during the Yanshanian–Himalayan tectonic transformation and the primary oil reservoirs that formed during Hercynian–Indosinian orogenies form a total and complex petroleum system comprising conventional and uncon-ventional petroleum reservoirs.This might be a common feature of oil–gas accumulation in the Central Asian Orogenic Belt and highlights the potential for petroleum exploration at intermediate–shal-low depths. 展开更多
关键词 Geodynamic transformation Tectonic far-field stress Yanshanian-Himalayan central asian orogenic belt Total petroleum system
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部