Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental pe...Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental period is still scarce.This paper reconstructed a hydrology history from core sediments of the Dalongchi Lake in the Tianshan Mountains.The comparability between endmembers(EMs)of grain size and ICP-AES based geochemical elements in the lake sediments highlighted their availability for hydrological reconstructions.Hydrodynamic forces(EM1,EM4,Ti/Al and Li/Al),chemical weathering intensity[(Mg+Ca+K)/Al],salinity proxy(Mg/Ca)and redoxsensitive proxy(Fe/Mn)highly correlated with the first principal component(P<0.01),whereas paleoproductivity proxies(TN,TOC,Ba/Al,Zn/Al and Cu/Al)and C/N showed high loadings on the second principal component(P<0.05).The inferred hydrology progress was nonlinearly responded to temperature,precipitation and climate-dictated glaciers.Specifically,the water level didn’t always covary with the humidity because of glaciers.The maximum water level was the comprehensive result of glaciers melting and high humidity around 1830 CE.Thereafter,water level continually decreased with declining moisture at high temperature,implying a limited buffering capacity of glaciers in the Dalongchi Lake basin.EM3-indicated eolian activity intensity was caused by the behaviors of Siberian High because the latter intensified surface wind and the dust transportation.The hydrothermal patterns were characterized by warm/dry and cold/wet alternations in a long run although warm/wet pattern was identified from a short-term view.展开更多
Climate change and human activities have increased avalanche risks in alpine mountains.Therefore,strengthening the research on mitigating and controlling avalanche disasters is indispensable for sustainable socio-econ...Climate change and human activities have increased avalanche risks in alpine mountains.Therefore,strengthening the research on mitigating and controlling avalanche disasters is indispensable for sustainable socio-economic development in mountainous areas.Early avalanche warning is an essential means of avalanche disaster prevention.However,the theoretical development and application of avalanche warning strategies remain limited due to the lack of systematic understanding of the triggering mechanisms of avalanches.Based on observational data(2015–2019)of avalanches,snowpack,meteorological parameters,surface soil temperature and moisture,and topography in avalanche-prone areas in the central Tianshan Mountains,we analyzed the characteristics of different types of avalanches under a continental snow climate and the environmental factors(such as meteorological conditions and snowpack)that trigger avalanches,as well as the triggering mechanisms for different types of avalanches under the continental snow climate in terms of snow-layer shear fracture modes.We found that the snowpack parameters,weather conditions,and soil temperature and moisture varied significantly among the stages of snow accumulation,stabilization,and melting,resulting in different avalanches prevailing in different stages of snowpack evolution.Moreover,the snow-layer fractures were driven by single external factors or the combined multiple factors under the continental snow climate.Fifty-four percent of the avalanche events in the study area occurred during or after a snowfall,with 36%related to sudden increases in temperature.Then considering different triggering scenarios,snowpack evolution stages,and the coupling of intrinsic and extrinsic drivers of triggering snow-layer shear failure,we constructed five snow-layer shear fracture modes and twelve avalanche-triggering modes on mountain slopes under a continental snow climate.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41902024U1203821L08)+3 种基金the Chongqing Science and Technology Commission(cstc2019jcyjmsxmX0656)the Talent Introduction Program of Chongqing Three Gorges University(17RC08)the Research Center for Sustainable Development of the Three Gorges Reservoir Area(18sxxyjd12)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022447)。
文摘Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental period is still scarce.This paper reconstructed a hydrology history from core sediments of the Dalongchi Lake in the Tianshan Mountains.The comparability between endmembers(EMs)of grain size and ICP-AES based geochemical elements in the lake sediments highlighted their availability for hydrological reconstructions.Hydrodynamic forces(EM1,EM4,Ti/Al and Li/Al),chemical weathering intensity[(Mg+Ca+K)/Al],salinity proxy(Mg/Ca)and redoxsensitive proxy(Fe/Mn)highly correlated with the first principal component(P<0.01),whereas paleoproductivity proxies(TN,TOC,Ba/Al,Zn/Al and Cu/Al)and C/N showed high loadings on the second principal component(P<0.05).The inferred hydrology progress was nonlinearly responded to temperature,precipitation and climate-dictated glaciers.Specifically,the water level didn’t always covary with the humidity because of glaciers.The maximum water level was the comprehensive result of glaciers melting and high humidity around 1830 CE.Thereafter,water level continually decreased with declining moisture at high temperature,implying a limited buffering capacity of glaciers in the Dalongchi Lake basin.EM3-indicated eolian activity intensity was caused by the behaviors of Siberian High because the latter intensified surface wind and the dust transportation.The hydrothermal patterns were characterized by warm/dry and cold/wet alternations in a long run although warm/wet pattern was identified from a short-term view.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090302)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0906)the National Natural Science Foundation of China(Grant No.42101080).
文摘Climate change and human activities have increased avalanche risks in alpine mountains.Therefore,strengthening the research on mitigating and controlling avalanche disasters is indispensable for sustainable socio-economic development in mountainous areas.Early avalanche warning is an essential means of avalanche disaster prevention.However,the theoretical development and application of avalanche warning strategies remain limited due to the lack of systematic understanding of the triggering mechanisms of avalanches.Based on observational data(2015–2019)of avalanches,snowpack,meteorological parameters,surface soil temperature and moisture,and topography in avalanche-prone areas in the central Tianshan Mountains,we analyzed the characteristics of different types of avalanches under a continental snow climate and the environmental factors(such as meteorological conditions and snowpack)that trigger avalanches,as well as the triggering mechanisms for different types of avalanches under the continental snow climate in terms of snow-layer shear fracture modes.We found that the snowpack parameters,weather conditions,and soil temperature and moisture varied significantly among the stages of snow accumulation,stabilization,and melting,resulting in different avalanches prevailing in different stages of snowpack evolution.Moreover,the snow-layer fractures were driven by single external factors or the combined multiple factors under the continental snow climate.Fifty-four percent of the avalanche events in the study area occurred during or after a snowfall,with 36%related to sudden increases in temperature.Then considering different triggering scenarios,snowpack evolution stages,and the coupling of intrinsic and extrinsic drivers of triggering snow-layer shear failure,we constructed five snow-layer shear fracture modes and twelve avalanche-triggering modes on mountain slopes under a continental snow climate.