The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
A numerical model for simulating the dambreak problems was presented. The model was based on a high-resolution semi-discrete central-upwind difference scheme. In order to reduce spurious oscillation, the uniformly non...A numerical model for simulating the dambreak problems was presented. The model was based on a high-resolution semi-discrete central-upwind difference scheme. In order to reduce spurious oscillation, the uniformly non-oscillatory limiter was employed. A third-order total variation diminishing Runge-Kutta method is used for time integration. The main feature of the presented method is its simplicity. It requires no Riemann solvers, no flux splitting and no flux limiter. It is explicit and does not require dimensional splitting for two dimensions. The Simpson quadrature rule was employed to compute the source term. To verify the effectiveness and accuracy of the proposed method, the 1D dambreak, circular dam-break and partial dam-break problems were simulated. The results are shown to be in good agreement with analytical solution and numerical results obtained by other methods.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
文摘A numerical model for simulating the dambreak problems was presented. The model was based on a high-resolution semi-discrete central-upwind difference scheme. In order to reduce spurious oscillation, the uniformly non-oscillatory limiter was employed. A third-order total variation diminishing Runge-Kutta method is used for time integration. The main feature of the presented method is its simplicity. It requires no Riemann solvers, no flux splitting and no flux limiter. It is explicit and does not require dimensional splitting for two dimensions. The Simpson quadrature rule was employed to compute the source term. To verify the effectiveness and accuracy of the proposed method, the 1D dambreak, circular dam-break and partial dam-break problems were simulated. The results are shown to be in good agreement with analytical solution and numerical results obtained by other methods.