For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety ...For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety and number of neural pathways devoted to computing auditory information is unique among sensory modalities (Kaas, 2008). After the initial sensorineural encoding of sound at the level of the cochlea, auditory information is processed in several lower brainstem centers and eventually converges in the midbrain, at the level of the inferior colliculus (Wenstrup, 2005), Subsequently, auditory information is transferred through the thalamus, the medial geniculate body, and then the auditory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011;展开更多
文摘For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety and number of neural pathways devoted to computing auditory information is unique among sensory modalities (Kaas, 2008). After the initial sensorineural encoding of sound at the level of the cochlea, auditory information is processed in several lower brainstem centers and eventually converges in the midbrain, at the level of the inferior colliculus (Wenstrup, 2005), Subsequently, auditory information is transferred through the thalamus, the medial geniculate body, and then the auditory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011;