The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. ...The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions.展开更多
基金This research was supported by the State Antarctic Committee of China,the National Natural Science Foundation of China(Project 4870113),the Geological Foundation and the Chinese Academy of Geo1ogical Sciences
文摘The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions.