The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model...The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively.展开更多
A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study incl...A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study includes the Embden-Meyerhof-Parnas pathway,the pentose phosphate pathway,the tricarboxylic acid cycle,CO2 anaplerotic reactions,ethanol and acetate formation,and pathways involved in amino acid synthesis. The approach of hybridized genetic algorithm combined with the sequential simplex technique was used to optimize a quadratic error function without the requirement of the information on the partial derivatives. The impact of some key pa-rameters on the algorithm was studied. This approach was proved to be rapid and numerically stable in the analysis of the central metabolism of S.cerevisiae.展开更多
在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构...在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构建含多种分布式资源的产消者内部调度模型,并考虑负荷需求以及新能源出力的波动性与随机性,基于条件风险价值(conditional value at risk,CVaR)量化不确定性带来的风险。然后,提出多产消者弱中心化电价迭代机制,利用供需关系引导电价更新。同时考虑到产消者隐私保护,基于Paillier同态加密算法和秘密共享原理设计电量数据聚合方法。该方法能够在各方主体隐私得到保护的前提下获取系统的供需信息。最后,通过算例验证了文中所提机制的有效性与合理性,且经过能量共享后多产消者整体成本降低12.6%。展开更多
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
基金supported by the National Natural Science Foundation of China (No. 41174034)
文摘The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively.
基金Supported by the National Natural Science Foundation of China (No.20276065)the Special Funds for Major State BasicResearch Program of China (973 Program, 2007CB707805).
文摘A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study includes the Embden-Meyerhof-Parnas pathway,the pentose phosphate pathway,the tricarboxylic acid cycle,CO2 anaplerotic reactions,ethanol and acetate formation,and pathways involved in amino acid synthesis. The approach of hybridized genetic algorithm combined with the sequential simplex technique was used to optimize a quadratic error function without the requirement of the information on the partial derivatives. The impact of some key pa-rameters on the algorithm was studied. This approach was proved to be rapid and numerically stable in the analysis of the central metabolism of S.cerevisiae.
文摘在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构建含多种分布式资源的产消者内部调度模型,并考虑负荷需求以及新能源出力的波动性与随机性,基于条件风险价值(conditional value at risk,CVaR)量化不确定性带来的风险。然后,提出多产消者弱中心化电价迭代机制,利用供需关系引导电价更新。同时考虑到产消者隐私保护,基于Paillier同态加密算法和秘密共享原理设计电量数据聚合方法。该方法能够在各方主体隐私得到保护的前提下获取系统的供需信息。最后,通过算例验证了文中所提机制的有效性与合理性,且经过能量共享后多产消者整体成本降低12.6%。
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.