In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalg...In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalgebras of n-Lie algebras over the field with characteristic zero, and prove that the Frattini subalgebra of any k-solvable (k ≥2) n-Lie algebra is zero.展开更多
Let U(n,Q)be the group of all n×n(upper)unitriangular matrices over rational numbers field Q.Let S be a subset of U(n,Q).In this paper,we prove that S is a subgroup of U(n,Q)if and only if the(i,j)-th entry S;sat...Let U(n,Q)be the group of all n×n(upper)unitriangular matrices over rational numbers field Q.Let S be a subset of U(n,Q).In this paper,we prove that S is a subgroup of U(n,Q)if and only if the(i,j)-th entry S;satisfies some condition(see Theorem 3.5).Furthermore,we compute the upper central series and the lower central series for S,and obtain the condition that the upper central series and the lower central series of S coincide.展开更多
基金The NSF(2005000088)of Hebei Province the NSF(y2004034)of Hebei University.
文摘In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalgebras of n-Lie algebras over the field with characteristic zero, and prove that the Frattini subalgebra of any k-solvable (k ≥2) n-Lie algebra is zero.
基金National Natural Science Foundation of China(Grant Nos.12171142,11971155,12071117)。
文摘Let U(n,Q)be the group of all n×n(upper)unitriangular matrices over rational numbers field Q.Let S be a subset of U(n,Q).In this paper,we prove that S is a subgroup of U(n,Q)if and only if the(i,j)-th entry S;satisfies some condition(see Theorem 3.5).Furthermore,we compute the upper central series and the lower central series for S,and obtain the condition that the upper central series and the lower central series of S coincide.