We propose a novel waveguide design of polarization-maintaining few mode fiber(PM-FMF) supporting ≥10non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure ...We propose a novel waveguide design of polarization-maintaining few mode fiber(PM-FMF) supporting ≥10non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure endows a new degree of freedom to adjust the birefringence of all the guided modes, including the fundamental polarization mode. Numerical simulations demonstrate that, by optimizing the air hole and elliptical-ring core,a PM-FMF supporting 10 distinctive polarization modes has been achieved, and the effective index difference Δn_(eff) between the adjacent guided modes could be kept larger than 1.32 × 10^(-4) over the whole C +L band. The proposed fiber structure can flexibly tailored to support an even larger number of modes in PM-FMF(14-mode PM-FMF has been demonstrated as an example), which can be readily applicable to a scalable mode division multiplexing system.展开更多
By means of the weakly guiding approximation, the mode spot sizes Wx and Wy of the fundamental mode along the semimajor (x-direction) and semiminor (y-direction) axes of the fiber core in elliptical core two- mode...By means of the weakly guiding approximation, the mode spot sizes Wx and Wy of the fundamental mode along the semimajor (x-direction) and semiminor (y-direction) axes of the fiber core in elliptical core two- mode fiber are discussed. The variation of their ratio value Wx/W9 with the operation wavelength A and the length ratio a/b between the semimajor axis and the semiminor axis of the fiber core is analyzed. Based on this analysis, the distribution figures of two-lobe interferential mode patterns are evaluated and simulated quantitatively for different phase difference changes between LP01 and LP~~n modes. The two-lobe interferential mode patterns have the same profile and distribute symmetrically when the phase difference equals ~r/2. Their central distance S becomes larger when W~:/W~ augments gradually. F^rthermore, the equation about the central distance S of the two-lobe interferential mode patterns is given when the operation wavelength varies between 0.65 and 1.31 #m, which is important to applications shuch as sensors and coupling devices between different fibers.展开更多
基金National Natural Science Foundation of China(NSFC)(61331010,61205063)863 High Technology plan(2015AA016904)Program for New Century Excellent Talents in University(NCET)(NCET-13-0235)
文摘We propose a novel waveguide design of polarization-maintaining few mode fiber(PM-FMF) supporting ≥10non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure endows a new degree of freedom to adjust the birefringence of all the guided modes, including the fundamental polarization mode. Numerical simulations demonstrate that, by optimizing the air hole and elliptical-ring core,a PM-FMF supporting 10 distinctive polarization modes has been achieved, and the effective index difference Δn_(eff) between the adjacent guided modes could be kept larger than 1.32 × 10^(-4) over the whole C +L band. The proposed fiber structure can flexibly tailored to support an even larger number of modes in PM-FMF(14-mode PM-FMF has been demonstrated as an example), which can be readily applicable to a scalable mode division multiplexing system.
基金National Basic Research Program of China under Grant No.2006CB806001.
文摘By means of the weakly guiding approximation, the mode spot sizes Wx and Wy of the fundamental mode along the semimajor (x-direction) and semiminor (y-direction) axes of the fiber core in elliptical core two- mode fiber are discussed. The variation of their ratio value Wx/W9 with the operation wavelength A and the length ratio a/b between the semimajor axis and the semiminor axis of the fiber core is analyzed. Based on this analysis, the distribution figures of two-lobe interferential mode patterns are evaluated and simulated quantitatively for different phase difference changes between LP01 and LP~~n modes. The two-lobe interferential mode patterns have the same profile and distribute symmetrically when the phase difference equals ~r/2. Their central distance S becomes larger when W~:/W~ augments gradually. F^rthermore, the equation about the central distance S of the two-lobe interferential mode patterns is given when the operation wavelength varies between 0.65 and 1.31 #m, which is important to applications shuch as sensors and coupling devices between different fibers.