期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Fracture Behavior of Alumina-based Prismatic Ceramic Composites
1
作者 Guanghui MIN and Shuqi ZHENG Shandong University of Technology, Jinan 250061, China T.Inoue and K. Ueno Osaka National Research institute, Ikeda City, Osaka 563, Japan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期81-82,共2页
The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation ’for crack propagation a... The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation ’for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability. 展开更多
关键词 Fracture Behavior of Alumina-based Prismatic ceramic composites
下载PDF
Processing,microstructure,and properties of porous ceramic composites with directional channels 被引量:1
2
作者 Bo Zhang Yang Yang Xueling Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期1-15,共15页
Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation ... Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels. 展开更多
关键词 Porous ceramic composites Directional microchannels Processing routes PERMEABILITY
原文传递
Ceramic composites toughened by vat photopolymerization 3D printing technology
3
作者 Qiaolei Li Zhenxue Pan +4 位作者 Jingjing Liang Zongbo Zhang Jinguo Li Yizhou Zhou Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期42-48,共7页
High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-tempe... High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-temperature stability of the material.In this work,vat photopolymerization 3D printing technology was used to achieve toughening of ceramic composite material.The friction sliding of the 3D-printed ceramic macrolayer structure results in effective energy dissipation and redistribution of strain in the whole structure,and macroscale toughening of the ceramic material is realized.In addition,the bridging and elongation of the crack in situ amorphous ceramic whiskers were significant microscopic toughening results,coupled with the toughening of the crack tip of nano-ZrO_(2).Multiscale collaborative toughening methods based on 3D-printed ceramics should find wide applications for materials in service at extreme high temperatures. 展开更多
关键词 ceramic composites 3D printing Flexure strength Fracture toughness POLYSILAZANE
原文传递
Oxidation behavior of Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(x)C(M=Ti,Zr,Hf,Nb,Ta) composite ceramic at high temperature
4
作者 徐帅 王韬 +7 位作者 王新刚 吴璐 方忠强 葛芳芳 蒙萱 廖庆 魏金春 李炳生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期629-637,共9页
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M... Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic. 展开更多
关键词 ceramic composites oxidation oxide surface microstructure
下载PDF
Cold sintering process for fabrication of a superhydrophobic ZnO-polytetrafluoroethylene(PTFE)ceramic composite
5
作者 Xuetong Zhao Yang Yang +6 位作者 Li Cheng Jing Guo Shenglin Kang Yuchen Li Xilin Wang Lijun Yang Ruijin Liao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第9期1758-1766,共9页
Composite coatings or films with polytetrafluoroethylene(PTFE)are typically utilized to offer superhydrophobic surfaces.However,the superhydrophobic surfaces usually have limited durability and require complicated fab... Composite coatings or films with polytetrafluoroethylene(PTFE)are typically utilized to offer superhydrophobic surfaces.However,the superhydrophobic surfaces usually have limited durability and require complicated fabrication methods.Herein,we report the successful integration of PTFE with ZnO ceramics to achieve superhydrophobicity via a one-step sintering method,cold sintering process(CSP),at 300℃.(1–x)ZnO–x PTFE ceramic composites with x ranging from 0 to 70 vol%are densified with relative density of over 97%.Micro/nano-scale PTFE polymer is dispersed among ZnO grains forming polymer grain boundary phases,which modulate surface morphology and surface energy of the ZnO–PTFE ceramic composites.For the 60 vol%ZnO–40 vol%PTFE ceramic composite,superhydrophobic properties are optimized with static water contact angles(WCAs)and sliding angles(SAs)of 162°and 7°,respectively.After abrading into various thicknesses(2.52,2.26,and 1.99 mm)and contaminating with graphite powders on the surface,WCA and SA are still maintained with a high level of 157°–160°and 7°–9.3°,respectively.This work indicates that CSP provides a promising pathway to integrate polymers with ceramics to realize stable superhydrophobicity. 展开更多
关键词 cold sintering process(CSP) ZnO-polytetrafluoroethylene(PTFE)ceramic composites contact angles sliding angles(SAs) SUPERHYDROPHOBICITY
原文传递
Low-temperature and flexible strategy to in-situ fabricate ZrSiO_(4)-based ceramic composites via doping and tuning solid-state reaction
6
作者 Bohan Wang Le Fu +5 位作者 Junjie Song Wenjun Yu Ying Deng Guofu Xu Jiwu Huang Wei Xia 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第6期1238-1257,共20页
Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via c... Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via controlling the solid-state reaction between zirconia(ZrO_(2))and silica(SiO_(2))are limited.In this work,we proposed a low-temperature strategy to flexibly design and fabricate ZrSiO_(4)-based ceramic composites via doping and tuning the solid-state reaction.Two ceramic composites and ZrSiO_(4) ceramics were in-situ prepared by reactive fast hot pressing(FHP)at approximately 1250℃ based on the proposed strategy,i.e.,a ZrSiO_(4)-SiO_(2) dual-phase composite with bicontinuous interpenetrating and hierarchical microstructures,a ZrSiO_(4)-ZrO_(2) dual-phase composite with a microstructure of ZrO_(2) submicron-and nano-particles embedded in a micron ZrSiO_(4) matrix,and ZrSiO_(4) ceramics with a small amount of residual ZrO_(2) nanoparticles.The results showed that the phase compositions,microstructure configurations,mechanical properties,and wear resistance of the materials can be flexibly regulated by the proposed strategy.Hence,ZrSiO_(4)-based ceramic composites with different properties can be easily fabricated based on different application scenarios.These findings would offer useful guidance for researchers to flexibly fabricate ZrSiO_(4)-based ceramic composites at low temperatures and tailor their microstructures and properties through doping and tuning the solid-state reaction. 展开更多
关键词 zirconia(ZrO_(2))-silica(SiO_(2)) zircon(ZrSiO_(4)) solid-state reaction ceramic composite mechanical properties wear resistance
原文传递
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
7
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 SiC composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Controllable fabrication and multifunctional applications of graphene/ceramic composites 被引量:5
8
作者 Yujia HUANG Chunlei WAN 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第3期271-291,共21页
Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,inco... Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,incorporating graphene to ceramics also offers new opportunities for endowing ceramics with versatility.In this review,the recent development of graphene/ceramic bulk composites is summarized with the focus on the construction of well-designed architecture and the realization of multifunctional applications.The processing technologies of the composites are systematically summarized towards homogeneous dispersion and even ordered orientation of graphene sheets in the ceramic matrix.The improvement of composites in mechanical,electrical,electromagnetic,and thermal performances is discussed.The novel multifunctional applications brought by smart integration of graphene in ceramics are also addressed,including microwave absorption,electromagnetic interference shielding,ballistic armors,self-monitor damage sensors,and energy storage and conversion. 展开更多
关键词 graphene/ceramic composites synthesis mechanical property electromagnetic properties thermal properties MULTIFUNCTION
原文传递
Novel fast ionic conductor ceramic composite separator for highperformance safe Li-ion power batteries
9
作者 Yuchuan Feng Minghui Wang +5 位作者 Lina Gao Zhaoling He Kai Chen Zheng Li Hongcai He Yuanhua Lin 《Journal of Materiomics》 SCIE 2022年第6期1184-1190,共7页
The ceramic composite separators coated with silica or alumina particles have been used in power batteries due to their better electrolyte wettability and better thermal stability compared with bare polymer separators... The ceramic composite separators coated with silica or alumina particles have been used in power batteries due to their better electrolyte wettability and better thermal stability compared with bare polymer separators.However,these oxide ceramics are Liþion insulators,which increase internal resistance and hinder the improvement of rate capability of batteries.Herein,we report a strategy to further improving the performance of lithium-ion batteries(LIBs)by using fast ionic conductor ceramic composite separator as an alternative to traditional ceramic coated separators.Lithium lanthanum titanate(LLTO),a fast ionic conductor with excellent room temperature bulk conductivity,are coated on the common polyethylene(PE)separators.Our results demonstrate that such a novel LLTO-coated separator possess excellent electrolyte wettability and thermal stability;and the assembled NCM523/graphite lithium-ion pouch cells with LLTO-coated separator show better rate capability and cyclic performance with 88.7%capacity retention after 1000 cycles at room temperature compared with the pouch cells with Al2O_(3)-coated separators.The fast ionic conductor ceramic composite separators will be a potential competitor to the next-generation novel separators for high-performance Li-ion power batteries. 展开更多
关键词 Li-ion batteries ceramic composite separator LLTO Fast ionic conductor Pouch cells
原文传递
Mechanical Properties and Microstructure of Al_(2)O_(3)/SiC Composite Ceramics for Solar Heat Absorber 被引量:1
10
作者 吴建锋 周炀 +3 位作者 SUN Mengke XU Xiaohong TIAN Kezhong YU Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期615-623,共9页
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ... Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular. 展开更多
关键词 Al_(2)O_(3)/SiC composite ceramics HARDNESS thermal conductivity solar heat absorption material
下载PDF
Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition 被引量:2
11
作者 Yunfei Huang Dongjiang Wu +2 位作者 Dake Zhao Fangyong Niu Guangyi Ma 《International Journal of Extreme Manufacturing》 EI 2021年第3期49-62,共14页
Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based(DED-LB)te... Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based(DED-LB)technology.However,the wider application of DED-LB technology is limited due to the inadequate understanding of process conditions.The shaping quality,microstructure,and mechanical properties of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13)(6 mol%TiO_(2))composite ceramics were systematically investigated as a function of energy input in an extensive process window.On this basis,the formation mechanism of solidification defects and the evolution process of microstructure were revealed,and the optimized process parameters were determined.Results show that high energy input improves the fluidity of the molten pool and promotes the uniform distribution and full growth of constituent phases,thus,facilitating the elimination of solidification defects,such as pores and strip gaps.In addition,the microstructure size is strongly dependent on the energy input,increasing when the energy input increases.Moreover,the morphology of theα-Al_(2)O_(3) phase gradually transforms from cellular into cellular dendrite with increasing energy input due to changing solidification conditions.Under the comprehensive influence of solidification defects and microstructure size,the fracture toughness and flexural strength of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics present a parabolic law behavior as the energy input increases.Optimal shaping quality and excellent mechanical properties are achieved at an energy input range of 0.36-0.54 W*min^(2) g^(-1) mm^(-1).Within this process window,the average microhardness,fracture toughness,and flexural strength of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics are up to 1640 Hv,3.87 MPa m^(1/2),and 227 MPa,respectively.This study provides practical guidance for determining the process parameters of DED-LB of melt growth Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics. 展开更多
关键词 additive manufacturing Al_(2)O_(3) composite ceramics microstructure mechanical properties
下载PDF
Effect of Interfacial Bonding on the Toughening of Al_2O_3/Ni Ceramic Matrix Composites
12
作者 Xudong SUN(Dept. of Materials Science and Engineering, Northeastern University, Shenyang 110006, China)J.A. Yeomans(Dept. of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, UK) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期29-34,共6页
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation.... The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite. 展开更多
关键词 AL Effect of Interfacial Bonding on the Toughening of Al2O3/Ni ceramic Matrix composites NI
下载PDF
In Situ Reaction Strengthening and Toughening of B_(4)C/TiSi_(2)Ceramics
13
作者 夏涛 涂晓诗 +2 位作者 张帆 ZHANG Jinyong REN Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期12-19,共8页
B_(4)C-SiC-TiB_(2)ceramics were prepared by in situ reactive hot-pressing sintering with TiSi_(2)as an additive.The reaction pathways of TiSi_(2)and B_(4)C were investigated.The sintering was found to be a multistep p... B_(4)C-SiC-TiB_(2)ceramics were prepared by in situ reactive hot-pressing sintering with TiSi_(2)as an additive.The reaction pathways of TiSi_(2)and B_(4)C were investigated.The sintering was found to be a multistep process.The reaction started at approximately 1000℃,and TiB_(2)was formed first.Part of Si and C started to react at 1300℃,and the unreacted Si melted at 1400℃to form a liquid phase.TiSi_(2)predominantly affected the intermediate sintering process of B_(4)C and increased the sintering rate.Due to the unique reaction process of TiSi_(2)and B_(4)C,a large number of aggregates composed of SiC and TiB_(2)were generated.The results showed that composite ceramics with the optimal flexural strength of 807 MPa,fracture toughness of 3.2 MPa·m1/2,and hardness of 32 GPa,were obtained when the TiSi_(2)content was 10 wt%. 展开更多
关键词 in situ reaction hot pressing sintering TiSi_(2) B_(4)C composite ceramics reaction mechanism
下载PDF
不同编织方式下陶瓷基复合材料表面流动特性数值计算研究
14
作者 张金月 杨荣菲 +1 位作者 吴兴爽 葛宁 《风机技术》 2024年第2期38-43,共6页
Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoi... Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoil components, which mainly comes from different weaving methods and different braided tow thickness. However, few people have studied the influence of surface morphology of ceramic matrix composites(CMCs) on the development of boundary layer and the resulting flow loss. In this paper, Tex Gen is used to generate different surface morphology structures of ceramic matrix composites(CMCs), and the surface flow characteristics of corresponding CMCs plates are numerically studied. It is found that the slope of the displacement thickness of the woven surface first increases and then decreases in the whole transition interval. Thicker braided tow thickness and denser braiding method will induce earlier flow transition phenomenon and produce greater flow loss;The flow loss on the surface of CMCs plate is mainly composed of the vortex loss in the pit and the boundary layer loss outside the pit, and the boundary layer loss is dominant. The weaving methods has a greater influence on the flow state and flow loss of the boundary layer. 展开更多
关键词 ceramic Matrix composites Weave Pattern Boundary Layer Transition PIT Flow Loss
下载PDF
Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength 被引量:2
15
作者 刘金鹏 YOU Xiaoqiang +1 位作者 陈楠 杜国平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1266-1273,共8页
BaTiO3/epoxy composites consisting of two three-dimensionally interpenetrating networks of BaTiO3 and epoxy phases were prepared using a new approach. The BaTiO3/epoxy composites exhibit a colossal dielectric constant... BaTiO3/epoxy composites consisting of two three-dimensionally interpenetrating networks of BaTiO3 and epoxy phases were prepared using a new approach. The BaTiO3/epoxy composites exhibit a colossal dielectric constant, low dielectric loss and high flexural strength. In the BaTiO3 networks, chemically bonded grain boundaries between neighboring BaTiO3 grains were established, and they are responsible for the colossal dielectric constant and high flexural strength of the BaTiO3/epoxy composites. Furthermore, unlike the conventional ceramic/polymer composites, this approach also makes high loadings of BaTiO3 contents possible for the BaTiO3/epoxy composites without compromising their high flexural strength. 展开更多
关键词 ceramic/polymer composite BaTi03/epoxy dielectric property colossal dielectric constant
下载PDF
Fabrication,microstructure and properties of advanced ceramic-reinforced composites for dental implants:a review
16
作者 Mugilan Thanigachalam Aezhisai Vallavi Muthusamy Subramanian 《Biomaterials Translational》 2023年第3期151-165,共15页
The growing field of dental implant research and development has emerged to rectify the problems associated with human dental health issues. Bio-ceramics are widely used in the medical field, particularly in dental im... The growing field of dental implant research and development has emerged to rectify the problems associated with human dental health issues. Bio-ceramics are widely used in the medical field, particularly in dental implants, ortho implants, and medical and surgical tools. Various materials have been used in those applications to overcome the limitations and problems associated with their performance and its impact on dental implants. In this article we review and describe the fabrication methods employed for ceramic composites, the microstructure analyses used to identify significant effects on fracture behaviour, and various methods of enhancing mechanical properties. Further, the collective data show that the sintering technique improves the density, hardness, fracture toughness, and flexural strength of alumina- and zirconia-based composites compared with other methods. Future research aspects and suggestions are discussed systematically. 展开更多
关键词 ceramic composites flexural strength fracture toughness implant materials SINTERING Vickers hardness
原文传递
A review on additive manufacturing of ceramic matrix composites 被引量:2
17
作者 Jinxing Sun Daorong Ye +7 位作者 Ji Zou Xiaoteng Chen Yue Wang Jinsi Yuan Haowen Liang Hongqiao Qu Jon Binner Jiaming Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期1-16,共16页
Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compa... Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compared to single-phase ceramic components.It also opens up a new way to shape damage-tolerant ceramic composites with co-continuous phase reinforcement inspired by natural ma-terials.Nowadays,a large variety of AM techniques has been successfully applied to fabricate CMCs,but variable properties have been obtained so far.This article provides a comprehensive review on the AM of ceramic matrix composites through a systematic evaluation of the capabilities and limitations of each AM technique,with an emphasis on reported results regarding the properties and potentials of AM man-ufactured ceramic matrix composites. 展开更多
关键词 Additive manufacturing ceramic matrix composites 3D printing Mechanical properties Bioinspired composites
原文传递
A novel approach for manufacturing of layered,ultra-refractory composites using pliable,short fibre-reinforced ceramic sheets 被引量:1
18
作者 Matteo MOR Antonio VINCI +3 位作者 Simone FAILLA Pietro GALIZIA Luca ZOLI Diletta SCITI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第1期155-168,共14页
A new additive technique for manufacturing of short fibre-reinforced ultra-refractory ceramics is presented.This technique allows the fabrication of solvent-free,thin(~100µm),flexible,and easy-to-handle sheets su... A new additive technique for manufacturing of short fibre-reinforced ultra-refractory ceramics is presented.This technique allows the fabrication of solvent-free,thin(~100µm),flexible,and easy-to-handle sheets suitable for fabricating homogeneous or layered structures.A large range of compositions,in terms of matrix and fibre volumetric contents,from 0%to 100%is possible.The amount of short carbon fibres incorporated in the sheets ranged from 20 to 50 vol%,whereas the fibre length ranged from 3 to 5 mm.The matrix composition investigated with this technique consisted of ZrB_(2)/SiC/Y_(2)O_(3).By increasing the fibre amount from 35 to 50 vol%,an improvement of mechanical properties was observed.Four-point flexural strength(σ)ranged from 107 to 140 MPa,depending on the amount of carbon fibres(Cf).The same holds true for the work of fracture,ranging from 108 to 253 J/m^(2).Functionally graded composites were fabricated by overlapping sheets with a fibre gradient(0%-50%). 展开更多
关键词 ultra-high-temperature ceramics(UHTCs) ceramic matrix composites(CMCs) short carbon fibres mechanical properties
原文传递
Two birds with one stone:Construction of bifunctional-POSS hybridized boron-silicon ceramicized phenolic composites and its ablation behavior
19
作者 Zhaoqi Niu Yi Xin +7 位作者 Luyao Wang Shuai Shen Xiaoyan Ma Beixi Chen Chengzhi Wang Fang Chen Chengshuang Zhang Xiao Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第10期199-208,共10页
To further enhance the ablation resistance properties of thermosetting phenolic resin matrix composites,in this work,bifunctional alkalic heptaphenyltrisilanol sodium salt polyhedral oligomeric silsesquioxane was util... To further enhance the ablation resistance properties of thermosetting phenolic resin matrix composites,in this work,bifunctional alkalic heptaphenyltrisilanol sodium salt polyhedral oligomeric silsesquioxane was utilized to catalyze the synthesis of boron phenolic resin and provide silicon source to obtain boron-silicon hybrid phenolic resin(BPOSSPR)with excellent ablative resistance.BPOSSPR possesses a low cur-ing activation energy(101.4 kJ/mol)and excellent thermal properties(initial decomposition temperature was 453.0℃and char yield at 1000℃was 72.7%).The mechanical and thermal insulation properties of carbon fiber reinforced BPOSSPR composites(CF/BPOSSPR)and high silica fiber reinforced BPOSSPR composites(HSF/BPOSSPR)are significantly enhanced.The linear ablation rate and mass ablation rate of CF/BPOSSPR are as low as 0.003 mm/s and 0.0354 g/s;those of HSF/BPOSSPR are 0.119 mm/s and 0.0264 g/s.The ablation-resistance mechanism of BPOSSPR composites is mainly due to the formation of ceramic thermal barrier layers under high temperature conditions,such as B_(2)O_(3),SiO_(2),borosilicate glass,SiC,which might play an effective role in protecting against heat flow erosion.As a result of these ex-cellent properties,the innovative heat shielding BPOSSPR composites could offer the ability to tolerate harsher environment in future aerospace applications. 展开更多
关键词 ceramicized composites High-temperature properties Ablation behavior Bifunctional-POSS catalyst
原文传递
Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles
20
作者 Diletta Sciti Antonio Vinci +6 位作者 Luca Zoli Pietro Galizia Simone Failla Stefano Mungiguerra Giuseppe D.Di Martino Anselmo Cecere Raffaele Savino 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1345-1360,共16页
Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sinteri... Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sintering with either hot pressing(HP)or spark plasma sintering(SPS),were tested 2-3 times in a hybrid rocket motor for proving reusability.Sections were extracted after oxidation tests to study the microstructural changes and oxidative and thermomechanical stresses induced by the repeated tests.Compared to a reference graphite nozzle,no measurable erosion was observed for the UHTCMC-based nozzles.The oxidation mechanism consisted in the formation of a ZrO_(2)intermediate layer,with a liquid silicon oxide(SiO_(2))layer on the surface that was displaced by the action of the gas flux towards the divergent part of the nozzle,protecting it from further oxidation.Both specimens obtained by HP and SPS displayed similar performance,with very slight differences,which were attributed to small changes in porosity.These tests demonstrated the capability of complex-shaped prototypes made of the developed UHTCMCs to survive repeated exposure to environments representative of a realistic space propulsion application,for overall operating time up to 30 s,without any failure nor measurable erosion,making a promising step towards the development of reusable rocket components. 展开更多
关键词 ultra-high-temperature ceramics(UHTCs) ceramic matrix composites(CMCs) PROPULSION oxidation resistance nozzle prototypes
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部