The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as oper...Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.展开更多
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
基金financially supported by the Ministry of Science and Technology of China (Contract No. 2003CB615700)the Foundation of Science and Technology of the Educational Office of Anhui province, China (Contract No. 2005kj138)
文摘Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.