期刊文献+
共找到24,636篇文章
< 1 2 250 >
每页显示 20 50 100
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:1
1
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
2
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
3
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
下载PDF
Effect of Sc on Al_(3)Fe phase and mechanical properties of as-cast AA5052 aluminum alloy
4
作者 Yang Li Qing Yu +3 位作者 Feng-feng Chen Jia-wen He Hong-mei Yang Meng-nie Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期257-264,共8页
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud... The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content. 展开更多
关键词 AA5052 aluminum alloy Al3Fe phase mechanical properties grain boundary
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
5
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
6
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Influence of Non-Natural Ageing Temperature on the Microstructural Characteristics and Mechanical Properties of Cast Aluminum 6063 Alloy
7
作者 Oluwole Oladele Ayodele Adedeke +1 位作者 Olajesu Olanrewaju Samuel Olusunle 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期91-99,共9页
This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and ... This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and machined into tensile and impact test samples before carrying out solution heat treatment at 550?C (0.83 T<sub>m</sub>) on two parts of the samples while retaining one part as the control. The two parts were further divided into sets denoted A and B and were aged at 180?C (0.27 T<sub>m</sub>) and 160?C (0.24 T<sub>m</sub>), respectively, for 12 hours. The results showed that sample A has the optimal yield strength and ultimate tensile strength of 192 and 206 MPa, respectively. Likewise, the sample gave the highest impact strength value of about 9.63 J/mm<sup>2</sup>. The observed results were supported by the optical micrograph, which revealed that the sample has evenly dispersed precipitates in its microstructure. This is deemed responsible for the observed increase in strength of the sample. 展开更多
关键词 aluminum alloy Non-Natural Ageing Mechanical Properties Microstructural Features
下载PDF
Influence of Production Sequence of Aluminum Alloy Hot Rolling on Strip Surface Quality
8
作者 Hui Song Weixuan Jiang 《Frontiers of Metallurgical Industry》 2024年第1期12-14,共3页
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc... With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated. 展开更多
关键词 hot rolling production sequence surface quality aluminum alloy chromate treatment
下载PDF
Research of Microstructure,Phase,and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics
9
作者 Liang Yu Yuan Liu +3 位作者 Xiuling Cao Yulong Yan Chen Zhang Yanli Jiang 《Journal of Renewable Materials》 EI 2023年第7期3057-3072,共16页
In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the... In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the main component in the manufacturing of ceramics.The basic phases of the ceramics were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)without the addition of kaolin.The diffraction peaks of MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)kept decreasing while those of Al_(2)O_(3)kept increasing with an increase in temperature.In addition,the increase in temperature promoted the growth of the grains.The grains were uniform in size and regular in distribution,with a shrinkage of 2.2%,porosity of 72.5%,bulk density of 1.076 g/cm^(3),and compressive strength of 1.12 MPa.When the sintering temperature was 1450°C,the basic phases of the ceramic after the addition of kaolin were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2).With the increase of kaolin,the diffraction peaks of NaAl_(11)O_(17)and SiO_(2)decreased until they disappeared,while the diffraction peaks of Al_(2)O_(3)increased significantly.When kaolin was added at 30 wt.%,the ceramics obtained had shrinkage of 18%,a porosity of 47.26%,a bulk density of 1.965 g/cm^(3),and compressive strength of 31.9 MPa.Cracks existed inside the ceramics without the addition of kaolin,while the addition of kaolin significantly changed this defect.It is shown that SAD can obtain porous ceramics with good properties at a sintering temperature of 1450°C and a kaolin addition of 30 wt.%. 展开更多
关键词 Secondary aluminum dross porous ceramics microstrure PHASE mechanical properties
下载PDF
Synthesis of Ceramic Tiles Reinforced with Addition of Aluminum Particulate Waste
10
作者 Carla Tainara de Oliveira Lima Rafael Pacheco Evangelista +2 位作者 Carlos Alberto França Junior Aldemiro JoséRocha Palma Mirtânia Antunes Leão 《Journal of Civil Engineering and Architecture》 2023年第10期484-492,共9页
Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.T... Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C. 展开更多
关键词 ceramicS ceramic tiles metallic waste aluminum waste.
下载PDF
Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys 被引量:7
11
作者 CHEN Ling HAN Jing YU Shengxue 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期146-149,共4页
In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content... In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution. 展开更多
关键词 aluminum alloy micro-arc oxidation black coating anti-corrosion performance
下载PDF
Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments 被引量:3
12
作者 Yan-jun Li Hai-liang Yu +3 位作者 Hai-yun Jin Zhong-qi Shi Guan-jun Qiao Zhi-hao Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期530-536,共7页
An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical ... An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investi- gated. Some properties of the composite, including its bending strength at 700℃ and after oxidization at 700℃ for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion re- sistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiA1ON composite exhibits strong potential for application to molten aluminum environments. 展开更多
关键词 composite materials SiAION ceramics iron molybdenum alloys reaction bonding mechanical properties molten aluminum
下载PDF
Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al_2O_3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy 被引量:5
13
作者 黄开金 LIN Xin +1 位作者 XIE Changsheng T M Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期89-94,共6页
Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding (one-step method) and laser cladding followed by laser re-melting (two-... Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding (one-step method) and laser cladding followed by laser re-melting (two-step method) using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy, respectively. The microstructure of the coatings was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. Owing to the presence of hard α-Al2O3 and γ-Al2O3 phases, the coatings exhibited excellent wear resistance. In addition, the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method. 展开更多
关键词 laser cladding thermite reaction aluminum alloy WEAR
下载PDF
TLP bonding of alumina ceramic and 5A05 aluminum alloy using Ag-Cu-Ti interlayer 被引量:2
14
作者 王颖 曹健 +2 位作者 冯吉才 张丽霞 徐富家 《China Welding》 EI CAS 2009年第4期39-42,共4页
In order to join alumina ceramic to 5A05 aluminum alloy and obtain the excellent airtightness of joints whose maximum service temperature is 623 K, transient liquid phase (TLP) bonding technique was ,investigated us... In order to join alumina ceramic to 5A05 aluminum alloy and obtain the excellent airtightness of joints whose maximum service temperature is 623 K, transient liquid phase (TLP) bonding technique was ,investigated using Ag-Cu-Ti alloy as interlayer. The wetting experimental results confirm that Ti can react with alumina ceramic at 833 K by adding 2 wt.% Ti in Sn. But during bonding alumina ceramic and 5A05 aluminum alloy with Ag-Cu-Ti interlayer at 833 K, Ti preferentially reacts with Al and there is no reaction layer on alumina ceramic/Ag-Cu-Ti interface, which finally results in a poorly airtight joint. 展开更多
关键词 transient liquid phase bonding alumina ceramic 5A05 aluminum alloy Ag-Cu-Ti interlayer
下载PDF
Adhesive strength and structure of micro-arc oxidation ceramic coatings grown in-situ on LY12 aluminum alloy 被引量:1
15
作者 吴振东 姜兆华 姚忠平 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1588-1591,共4页
The ceramic coatings containing zirconium dioxide were grown in-situ on LY12 aluminium alloy by micro-arc oxidation in mixed zirconate and phosphate solution. The phase composition and morphology of the coatings were ... The ceramic coatings containing zirconium dioxide were grown in-situ on LY12 aluminium alloy by micro-arc oxidation in mixed zirconate and phosphate solution. The phase composition and morphology of the coatings were studied by XRD and SEM. The adhesive strength of ceramic coatings was assessed by thermal shock test and tensile test. The results show that the coating is composed of m-ZrO2,t-ZrO2, and a littleγ-Al2O3. Along the section of the coating, t-ZrO2 is more on both sides than that in the middle, while m-ZrO2 is more in the middle than that on both sides. Meantime the coating is also composed of a dense layer and a loose layer. The coating has excellent thermal shock resistance under 550℃and 600℃. And tensile tests show the adhesive strength of the dense layer of the coating with the substrate is more than 17.5 MPa. 展开更多
关键词 胶粘剂 强度 氧化行为 铝合金
下载PDF
Cr_2O_3 BASE CERAMIC COATING ON ALUMINUM ALLOYS FORMED BY CHEMICAL REACTIONS
16
作者 T.M. Shao, X.H. Ma and W.Y. Yang The State key laboratory on tribology of Tsinghua University, Beijing 100084, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期979-982,共4页
A newly developed method is introduced for producing Cr 2O 3 base ceramic coating on aluminum alloys. On the basis of properly selecting base reactions, slurry is prepared and then applied onto the substrate surface... A newly developed method is introduced for producing Cr 2O 3 base ceramic coating on aluminum alloys. On the basis of properly selecting base reactions, slurry is prepared and then applied onto the substrate surface. By chemical reactions taken place in situ on the surface of aluminum alloy at relative low temperature, Cr 2O 3 base ceramic coating is formed. By means of scanning electron microscopy, the coating microstructure and the bonding mechanism are studied. X ray diffraction analysis is also used to investigate the chemical composition of the coating. The coating formation mechanism is further discussed. With a pin on disk tester, wear test is made to evaluate the wear performances of the coating. The results show that by applying the coating on aluminum alloy, the wear decreases 5 times in comparation to that without coating. 展开更多
关键词 Cr 2O 3 ceramic coating aluminum alloy chemical reaction
下载PDF
Microstructure and Wear Behaviour of Laser-induced Thermite Reaction Al_2O_3 Ceramic Coating on AA7075 Aluminum Alloy
17
作者 Kaijin HUANG Xin LIN +1 位作者 Changsheng XIE T.M. Yue 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期201-206,共6页
The microstructure and wear behaviour of the thermite reaction coating produced by the hybrid laser claddingremelting on AA7075 aluminum alloy for the systems of Al-CuO-SiO2, Al-Cr2O3-SiO2, Al-Fe2O3-SiO2, and Al-TiO2-... The microstructure and wear behaviour of the thermite reaction coating produced by the hybrid laser claddingremelting on AA7075 aluminum alloy for the systems of Al-CuO-SiO2, Al-Cr2O3-SiO2, Al-Fe2O3-SiO2, and Al-TiO2-SiO2 were studied. The results of the X-ray diffraction (XRD) analysis show that in all the four reaction coatings, α-Al2O3 and γ-Al2O3 phases were present at the top surface, together with various intermetallic phases, the corresponding reduced metal and Al phase in the fusion zone. Under the dry sliding condition, the wear resistance, in terms of weight loss, of the laser-clad specimens was considerably higher than that of the untreated specimen. The predominant wear mechanism of the former specimens was abrasive wear, while for the latter, it was the adhesive wear that prevailed. 展开更多
关键词 Laser cladding Thermite reaction aluminum alloy WEAR
下载PDF
Thermal resistance of ceramic films on aluminum alloy by PECC
18
作者 张秋明 赫晓东 李垚 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期393-397,共5页
Three kinds of ceramic films were coated on aluminum alloy by process of plasma enhanced electrochemical surface of ceramic coating(PECC). The results show that thermal conductivity of films have particular characteri... Three kinds of ceramic films were coated on aluminum alloy by process of plasma enhanced electrochemical surface of ceramic coating(PECC). The results show that thermal conductivity of films have particular characteristic. With the varying temperature, thermal conductivity of films varies greatly: at 20 200℃, thermal conductivity of white film varies in the range of 15.28 21.02W/(m·K); thermal conductivity of black film varies in the range of 9.49 14.75W/(m·K); thermal conductivity of blown film varies in the range of 35.02 51.91W/(m·K). 展开更多
关键词 aluminum alloy PECC THERMAL CONDUCTIVITY
下载PDF
Structure and properties of ceramic coatings formed on aluminum alloys by microarc oxidation
19
作者 刘万辉 鲍爱莲 +1 位作者 刘荣祥 武万良 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1645-1648,共4页
The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution. Microstructure, phase composition and wear resistance of the oxide coatings were investigated by ... The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution. Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM,XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed ofα-Al2O3 andγ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys. 展开更多
关键词 陶瓷 铝合金 强度 抗蚀性 有色金属
下载PDF
Effect of Thermal-cold Cycling Treatment on Mechanical Properties and Microstructure of 6061 Aluminum Alloy 被引量:1
20
作者 王会敏 LI Yanguang +2 位作者 GUO Chaobo CUI Guoming HUANG Shiquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期677-681,共5页
The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmis... The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The cryogenic treatment mechanism of the alloys was discussed. The results show that thermal-cold cycling treatment is beneficial since it produces a large number of dislocations and accelerates the ageing process of the alloy and yields the finer dispersed β" precipitates in the matrix. This variation of microstructural changes leads to more favorable mechanical properties than the other investigated states, while grain boundary precipitation is coarse and distributed discontinuously along grain boundaries, with a lower precipitation free zone(PEZ) on the both sides of precipitated phase. As a result, the tensile strength, elongation and conductivity of 6061 aluminum alloy after thermal-cold cycling treatment are 373.37 MPa, 17.2% and 28.2 MS/m, respectively. Compared with conventional T6 temper, the mechanical properties are improved significantly. 展开更多
关键词 thermal-cold cycling treatment MICROSTRUCTURES tensile properties aluminum alloys
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部